(2010•溫州一模)已知數(shù)列an=2n-1,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足Tn=1-bn
(I)求{bn}的通項(xiàng)公式;
(II)試寫出一個(gè)m,使得
1am+9
是{bn}中的項(xiàng).
分析:(I)當(dāng)n=1時(shí),b1=
1
2
.當(dāng)n≥2時(shí),由Tn=1-bn,得bn=
1
2
bn-1
.由此能求出bn=(
1
2
)
n

(II)由bn=(
1
2
)
n
,an=2n-1,
1
am+9
是{bn}中的項(xiàng),知
1
2m+8
=(
1
2
)
n
,由此解得m=2n-4,n≥3,n∈N*
解答:解:(I)當(dāng)n=1時(shí),
∵b1=T1=1-b1,
b1=
1
2
.…(2分)
當(dāng)n≥2時(shí),∵Tn=1-bn
∴Tn-1=1-bn-1,
兩式相減得:bn=bn-1-bn,即:bn=
1
2
bn-1
.…(7分)
故{bn}為首項(xiàng)和公比均為
1
2
的等比數(shù)列,
bn=(
1
2
)
n
.…(9分)
(II)∵bn=(
1
2
)
n
,an=2n-1,
1
am+9
是{bn}中的項(xiàng),
1
2m+8
=(
1
2
)
n
,
∴2m+8=2n,
解得m=2n-1-4,n≥4,n∈N*,
當(dāng)n=4時(shí),m=4.…(14分)
點(diǎn)評(píng):本題考查數(shù)列的遞推式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意迭代法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=4x則f(-
12
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,為DB的中點(diǎn),
(Ⅰ)證明:AE⊥BC;
(Ⅱ)線段BC上是否存在一點(diǎn)F使得PF與面DBC所成的角為60°,若存在,試確定點(diǎn)F的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知a,b是實(shí)數(shù),則“a=1且b=1”是“a+b=2”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知α∈(
π
2
,π),sinα=
3
5
,則sin2α等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知B1,B2為橢圓C1
x2
a2
+y2=1(a>1)
短軸的兩個(gè)端點(diǎn),F(xiàn)為橢圓的一個(gè)焦點(diǎn),△B1FB2為正三角形,
(I)求橢圓C1的方程;
(II)設(shè)點(diǎn)P在拋物線C2:y=
x2
4
-1
上,C2在點(diǎn)P處的切線與橢圓C1交于A、C兩點(diǎn),若點(diǎn)P是線段AC的中點(diǎn),求AC的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案