【題目】如圖,在正方體中,若是線段上的動點,則下列結(jié)論不正確的是( )

A. 三棱錐的正視圖面積是定值

B. 異面直線所成的角可為

C. 三棱錐的體積大小與點在線段的位置有關(guān)

D. 直線與平面所成的角可為

【答案】D

【解析】

由正視圖三角形的底與高都是定值判斷;利用空間向量夾角余弦公式判斷;根據(jù)底面積確定高不確定判斷,結(jié)合排除法可得結(jié)果.

對于,正視圖三角形的底邊為的長,高為正方體的高,故棱錐正視圖的面積不變,故正確,排除;

對于,分別以為坐標軸,為原點建立空間直角坐標系,

設(shè)正方體邊長為1,

,

解得,

異面直線所成的角可為故正確,排除

對于,三棱錐的底面積一定,高大小與點在線段的位置有關(guān),所以體積的大小與點在線段的位置有關(guān),故正確排除,故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,2012年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,設(shè)的眼睛距地面的距離米.

(1)求攝影者到立柱的水平距離和立柱的高度;

(2)立柱的頂端有一長2米的彩桿繞其中點與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的單調(diào)區(qū)間;

(2)當(dāng)時,求不等式的解集;

(3)當(dāng)時,設(shè)函數(shù),求證:不等式在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得最大利潤是(
A.12萬元
B.20萬元
C.25萬元
D.27萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|3+2xx2>0},N={x|x>a},若MN,則實數(shù)a的取值范圍是(
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機抽取100名學(xué)生,對學(xué)習(xí)成績和學(xué)案使用程度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:

已知隨機抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.

參考公式:,其中

(1)請將上表補充完整(不用寫計算過程);

(2)試運用獨立性檢驗的思想方法有多大的把握認為學(xué)生的學(xué)習(xí)成績與對待學(xué)案的使用態(tài)度有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,已知a1= ,an+1= an ,n∈N* , 設(shè)Sn為{an}的前n項和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求直線yx被圓x2+(y-2)2=4截得的弦長;

(2)已知圓,求過點的圓的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

同步練習(xí)冊答案