已知函數(shù).
(1) 當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)a的取值范圍;
(2) 是否存在這樣的實(shí)數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請(qǐng)說明理由.
(1);(2)存在,.
解析試題分析:(1)首先根據(jù)對(duì)數(shù)函數(shù)的底數(shù) ,得到為減函數(shù),最小值是 ,再根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于0,得到 恒成立,在 范圍內(nèi)解不等式即可;(2)先看真數(shù)部分是減函數(shù),由已知“在區(qū)間上為增函數(shù)”可得,為減函數(shù),此時(shí)得到;根據(jù)“的最大值為1”,結(jié)合對(duì)數(shù)函數(shù)的真數(shù)大于0,可知,解出,再判斷它是不是在的范圍內(nèi),在這個(gè)范圍內(nèi),那么得到的的值滿足題目要求,不在這個(gè)范圍內(nèi)就說明滿足題目要求的是不存在的.
試題解析:(1)∵,設(shè),
則為減函數(shù),時(shí),t最小值為, 2分
當(dāng),恒有意義,即時(shí),恒成立.即;4分
又,∴ 6分
(2)令,則; ∵,∴ 函數(shù)為減函數(shù),
又∵在區(qū)間上為增函數(shù),∴為減函數(shù),∴,8分
所以時(shí),最小值為,此時(shí)最大值為;9分
又的最大值為1,所以, 10分
∴,即, 所以,故這樣的實(shí)數(shù)a存在. 12分
考點(diǎn):1.對(duì)數(shù)函數(shù)的定義及定義域;2.對(duì)數(shù)函數(shù)的單調(diào)性及其應(yīng)用;3.對(duì)數(shù)函數(shù)的值域與最值;4.簡單復(fù)合函數(shù)的單調(diào)性;5.解不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克)與時(shí)間(小時(shí))成正比;藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室.那從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=x2x+13,實(shí)數(shù)a滿足|xa|<1,求證:|f(x)f(a)|<2(|a|+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場(chǎng)調(diào)查后得到如下規(guī)律:若對(duì)產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).
(1)試寫出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時(shí)的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
近年來,網(wǎng)上購物已經(jīng)成為人們消費(fèi)的一種趨勢(shì)。假設(shè)某淘寶店的一種裝飾品每月的銷售量y(單位:千件)與銷售價(jià)格x(單位:元/件)滿足關(guān)系式其中2<x<6,m為常數(shù),已知銷售價(jià)格為4元/件時(shí),每月可售出21千件。(1)求m的值; (2)假設(shè)該淘寶店員工工資、辦公等每月所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價(jià)格x的值,使該店每月銷售飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 函數(shù),若且對(duì)任意實(shí)數(shù)均有成立.
(1)求表達(dá)式;
(2)當(dāng)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),當(dāng)時(shí),,且對(duì)任意的 ,有,
(Ⅰ)求證:;
(Ⅱ)求證:對(duì)任意的,恒有;
(Ⅲ)證明:是上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com