【題目】如圖,有一塊矩形空地,要在這塊空地上辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域.
(2)當(dāng)AE為何值時,綠地面積最大?
【答案】
(1)解:S△AEH=S△CFG= x2,\
S△BEF=S△DGH= (a﹣x)(2﹣x).\
∴y=SABCD﹣2S△AEH﹣2S△BEF=2a﹣x2﹣(a﹣x)(2﹣x)=﹣2x2+(a+2)x.\
由 ,得0<x≤2\
∴y=﹣2x2+(a+2)x,0<x≤2
(2)解:當(dāng) ,即a<6時,則x= 時,y取最大值 .\
當(dāng) ≥2,即a≥6時,y=﹣2x2+(a+2)x,在(0,2]上是增函數(shù),
則x=2時,y取最大值2a﹣4\
綜上所述:當(dāng)a<6時,AE= 時,綠地面積取最大值 ;
當(dāng)a≥6時,AE=2時,綠地面積取最大值2a﹣4
【解析】(1)先求得四邊形ABCD,△AHE的面積,再分割法求得四邊形EFGH的面積,即建立y關(guān)于x的函數(shù)關(guān)系式;(2)由(1)知y是關(guān)于x的二次函數(shù),用二次函數(shù)求最值的方法求解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點,過作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時,求的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫出這個函數(shù)的圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說明在各個單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:對任意的x1 , x2∈R(x1≠x2),有 <0,則( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017湖南長沙二模】已知橢圓()的離心率為,分別是它的左、右焦點,且存在直線,使關(guān)于的對稱點恰好是圓()的一條直線的兩個端點.
(1)求橢圓的方程;
(2)設(shè)直線與拋物線()相交于兩點,射線,與橢圓分別相交于點,試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時,總存在,使點在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建三明5月質(zhì)檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是全稱命題并且是真命題的是( )
A.?x∈R,x2>0
B.?x,y∈R,x2+y2>0
C.?x∈Q,x2∈Q
D.?x0∈Z,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點,離心率 ,且其中一個焦點與拋物線 的焦點重合.
(1)求橢圓C的方程;
(2)過點S( ,0)的動直線l交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com