【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.

1)求的解析式;

2)若關(guān)于的方程有三個不同解,求的取值范圍;

3)若,求的取值集合.

【答案】1.;2;3.

【解析】試題分析:1)由圖象可知,當時, 為一次函數(shù);當時, 是二次函數(shù),分別用待定系數(shù)法求解析式;(2)當時, ,結(jié)合圖象可以得到當時,函數(shù)的圖象和函數(shù)的圖象有三個公共點,即方程有三個不同解;(3)分兩種情況分別解方程即可。

試題解析:

1)①當時,函數(shù)為一次函數(shù),設(shè)其解析式為,

∵點在函數(shù)圖象上,

解得

②當時,函數(shù)是二次函數(shù),設(shè)其解析式為

∵點在函數(shù)圖象上,

解得

綜上.

21得當時, ,

。

結(jié)合圖象可得若方程有三個不同解,則。

∴實數(shù)的取值范圍.

3)當時,由

解得 ;

時,由,

整理得

解得(舍去)

綜上得滿足的取值集合是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCDA1B1C1D1中,E,F,M分別是棱B1C1,BB1C1D1的中點,是否存在過點E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,,都是邊長為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點;

(2)證明:;

(3)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)ABC的頂點分別為,圓M是ABC的外接圓,直線的方程是

(1)求圓M的方程;

(2)證明:直線與圓M相交;

(3)若直線被圓M截得的弦長為3,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD,AB=AD=CD=1,BD=,BDCD,將四邊形ABCD沿對角線BD折成四面體A′-BCD使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分12分為了解某校學生暑期參加體育鍛煉的情況,對某班M名學生暑期參加體育鍛煉的次數(shù)進行了統(tǒng)計得到如下的頻率分布表與直方圖:

組別

鍛煉次數(shù)

頻數(shù)

頻率

1

2

0.04

2

11

0.22

3

16

4

15

0.30

5

6

2

0.04

[

合計

1.00

1求頻率分布表中、、及頻率分布直方圖中的值;

2求參加鍛煉次數(shù)的眾數(shù)直接寫出答案,不要求計算過程;

3若參加鍛煉次數(shù)不少于18次為及格,估計這次體育鍛煉的及格率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設(shè)分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶按年齡分組進行訪談,統(tǒng)計結(jié)果如下表.

組號

年齡

訪談人數(shù)

愿意使用

1

[20,30)

5

5

2

[30.40)

10

10

3

[40.50)

15

12

4

[50.60)

14

8

5

[60,70)

6

2

(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?

(2)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.

(3)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點,能否在犯錯誤不超過1%的前提下認為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);

/table>

參考公式:,其中.

年齡不低于50歲的人數(shù)

年齡低于50歲的人數(shù)

合計

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級中學一興趣小組由20名高二級學生和15名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個體驗小組去市場體驗“共享單車”的使用.問:

(Ⅰ)應(yīng)從該興趣小組中抽取高一級和高二級的學生各多少人;

(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.

(1)如果從組內(nèi)隨機抽取3人,求抽取的3人中至少有2人在市場體驗過程中租型車的概率;

(2)已知該地區(qū)型車每小時的租金為1元, 型車每小時的租金為1.2元,設(shè)為從體驗小組內(nèi)隨機抽取3人得到的每小時租金之和,求的數(shù)學期望.

查看答案和解析>>

同步練習冊答案