已知定義在正實(shí)數(shù)集上的函數(shù),(其中為常數(shù),),若這兩個(gè)函數(shù)的圖象有公共點(diǎn),且在該點(diǎn)處的切線相同。
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ),       …………………1分
設(shè)函數(shù)的圖象有公共點(diǎn)為
由題意得             ……………………2分
解得:                             
(Ⅱ)由(Ⅰ)知,
所以,即
當(dāng)時(shí),,且等號(hào)不能同時(shí)成立,
所以,則由(1)式可得上恒成立  ……………………9分
設(shè),
                 …………………11分
顯然有
所以(僅當(dāng)時(shí)取等號(hào)),上為增函數(shù) …………………12分

所以實(shí)數(shù)的取值范圍是.   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點(diǎn)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) ,∈R
(1)當(dāng)時(shí),取得極值,求的值;
(2)若內(nèi)為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的導(dǎo)函數(shù),的圖象如右圖所示,則的圖象只可能是(  )

(A)          (B)          (C)         (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)
(1)若上存在單調(diào)遞增區(qū)間,求的取值范圍;
(Ⅱ)當(dāng)時(shí),的最小值為,求在該區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)若對(duì)任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(III)設(shè)F(x)=,曲線y=F(x)上是否總存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為鈍角柄點(diǎn)的鈍角三角開(kāi),且最長(zhǎng)邊的中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案