【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
【答案】(1)(x﹣2)2+(y﹣4)2=10.(2)(x﹣)2+(y﹣2)2=
【解析】
試題(1)首先設(shè)出方程,將點(diǎn)坐標(biāo)代入得到關(guān)于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;(2)首先設(shè)出點(diǎn)M的坐標(biāo),利用中點(diǎn)得到點(diǎn)D坐標(biāo),代入圓的方程整理化簡得到的中點(diǎn)M的軌跡方程
試題解析:(Ⅰ)由已知可設(shè)圓心N(a,3a﹣2),又由已知得|NA|=|NB|, 從而有,解得:a=2.
于是圓N的圓心N(2,4),半徑
所以,圓N的方程為(x﹣2)2+(y﹣4)2=10.(6分)
(2)設(shè)M(x,y),D(x1,y1),則由C(3,0)及M為線段CD的中點(diǎn)得:,解得:. 又點(diǎn)D在圓N:(x﹣2)2+(y﹣4)2=10上,所以有(2x﹣3﹣2)2+(2y﹣4)2=10,化簡得:
故所求的軌跡方程為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:若x2+y2>2,則|x|>1或|y|>1;命題q:直線mx-2y-m-2=0與圓x2+y2-3x+3y+2=0必有兩個不同交點(diǎn),則下列說法正確的是( )
A. p為真命題 B. p∧(q)為真命題
C. (p)∨q為假命題 D. (p)∨(q)為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a倍
B.設(shè)有一個回歸方程,變量x增加1個單位時,y平均減少5個單位
C.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱
D.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),則P(ξ>1)=0.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)函數(shù)與函數(shù)的圖像總有兩個交點(diǎn),設(shè)這兩個交點(diǎn)的橫坐標(biāo)分別為,.
(。┣的取值范圍;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(Ⅰ)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個頂點(diǎn)在球的球面上,,是邊長為正三角形,分別是的中點(diǎn),,則球的體積為_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年年初,中共中央、國務(wù)院發(fā)布《關(guān)于開展掃黑除惡專項斗爭的通知》,在全國范圍部署開展掃黑除惡專項斗爭.那么這次的“掃黑除惡”專項斗爭與2000年、2006年兩次在全國范圍內(nèi)持續(xù)開展了十多年的“打黑除惡”專項斗爭是否相同呢?某高校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了位該校在讀大學(xué)生,就“掃黑除惡”與“打黑除惡”是否相同進(jìn)行了一次調(diào)查,得到具體數(shù)據(jù)如表:
不相同 | 相同 | 合計 | |
男 | |||
女 | |||
合計 |
(1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過的前提下,認(rèn)為“掃黑除惡”與“打黑除惡”是否相同與性別有關(guān)"?
(2)計算這位大學(xué)生認(rèn)為“掃黑除惡”與“打黑除惡”不相同的頻率,并據(jù)此估算該校名在讀大學(xué)生中認(rèn)為“掃黑除惡”與“打黑除惡”不相同的人數(shù);
(3)為了解該校大學(xué)生對“掃黑除惡”與“打黑除惡”不同之處的知道情況,該校學(xué)生會組織部選取位男生和位女生逐個進(jìn)行采訪,最后再隨機(jī)選取次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的次采訪對象中至少有一位男生的概率.
參考公式: .
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué);虬嗉壟e行活動,通常需要張貼海報進(jìn)行宣傳.現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設(shè)計海報的尺寸,才能使四周空白面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某超市針對一款飲料推出刷臉支付活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用刷臉支付.該超市統(tǒng)計了活動剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:
(1)在推廣期內(nèi),與(均為大于零的常數(shù))哪一個適宜作為刷臉支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第天使用刷臉支付的人次;
(3)已知一瓶該飲料的售價為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計購買一瓶該飲料的平均花費(fèi).
參考數(shù)據(jù):其中,
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com