【題目】如圖,正三棱柱ABCA1B1C1中,AB2,AA13,

DC1B的中點,PAB邊上的動點.

(1)當點PAB的中點時,證明DP∥平面ACC1A1;

(2)若AP=3PB,求三棱錐BCDP的體積.

【答案】(1)見解析;(2)

【解析】試題分析:1)連結DP,AC1,推導出DPAC1,由此能證明DP∥平面ACClAl. (2)過點DDEBCE,則DE平行且等于CC1,CC1⊥平面ABC,DE⊥平面BCP,根據(jù)等體積轉化VB-CDPVD-BCP·SBCP·DE.即得解

試題解析:

(1)連結DPAC1,PAB中點,DC1B中點,∴DPAC1.又∵AC1平面ACC1A1DP平面ACC1A1,DP∥平面ACC1A1。

(2)AP3PB,得PBAB.過點DDEBCE,

DE平行且等于CC1CC1⊥平面ABC,DE⊥平面BCP

又∵CC13,DE.

VB-CDPVD-BCP·SBCP·DE××2××sin60°×

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A-,0),B0-,其中k≠0k≠±1,直線l經過點P(1,0)AB的中點.

(1)求證:A,B關于直線l對稱.

(2)1<k<時,求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程 = x+ ;
(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)第2題求出的回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調遞減區(qū)間是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學對高三學生進行體能測試,已知高三某文科班有學生30人,立定跳遠的測試成績用莖葉圖表示如圖(單位: );男生成績在以上(包括)定義為“合格”,成績在以下(不包括)定義為“不合格”;女生成績在以上(包括)定義為“合格”,成績在以下(不包括)定義為“不合格.

(1)求女生立定跳遠測試成績的中位數(shù);

(2)若在男生中按成績是否合格進行分層抽樣,抽取6人,求抽取成績?yōu)椤昂细瘛钡膶W生人數(shù);

(3)若從(2)中抽取的6名男生中任意選取4人,求這4人中至少有3人“合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果對定義在R上的函數(shù)f(x)對任意兩個不相等的實數(shù)x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函數(shù)”的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

)判斷函數(shù), 是否是有界函數(shù),請寫出詳細判斷過程.

)試證明:設, ,若 上分別以, 為上界,求證:函數(shù)上以為上界.

)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn}的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* , sin

查看答案和解析>>

同步練習冊答案