【題目】設(shè)拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點.
(1)若p=2且∠BFD=90°時,求圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,設(shè)直線m與拋物線C的另一個交點為E,在y軸上求一點G,使得∠OGE=∠OGA.

【答案】
(1)解:由已知得F(0,1),△BFD為等腰直角三角形,|BD|=4,

⊙F的半徑|FB|=2

∴⊙F的方程是x2+(y﹣1)2=8;


(2)解:∵A,B,F(xiàn)三點在同一直線m上,

∴AB是⊙F的直徑,∠ADB=90°,

由拋物線的定義得|AD|=|FA|= |AB|,

∴∠ABD=30°,m的斜率是 或﹣ ,

①當m的斜率是 時,直線m的方程是:y= x+

代入x2=2py,x2 px﹣p2=0,(△>0),

解得:x1= p,x2=﹣ p,

不妨記A( p, p),E(﹣ p, ),并設(shè)G(0,y0),

∵∠OGE=∠OGA,∴KGE+KGA=0,

+ =0,解得:y0=﹣ ,

②當m的斜率為﹣ 時,由圖象的對稱性可知G(0,﹣ ),

綜上,點G的坐標是(0,﹣ ).


【解析】(1)求出圓的半徑,從而求出圓的方程;(2)由拋物線的定義得|AD|=|FA|= |AB|,從而求出m,代入拋物線進而求出G的坐標.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機抽取高二年級20名學(xué)生某次考試成績(百分制)如表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系(
A.99.5%
B.99.9%
C.97.5%
D.95%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形為正方形,且, 為線段的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數(shù)f(x)的圖象關(guān)于點( ,0)對稱.
(1)當x∈(0, )時,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復(fù)上述過程,直到所有老師都分到班級,則

A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師

C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù)f(x)=+a+a

(1)設(shè)t=,求t的取值范圖;

(2)把f(x)表示為t的函數(shù)h(t);

(3)設(shè)f (x)的最大值為M(a),最小值為m(a),記g(a)=M(a)-m(a)求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點試結(jié)果互不影響,若考生小李和小王起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.

(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可最大?說明理由;

(2)假設(shè)小李選測試點進行測試,小王選擇測試點進行測試,為兩人在各測試點測試合格的測試點個數(shù)之和,機變的分布列及數(shù)學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=a2x+2ax-1(a>1,且a為常數(shù))在區(qū)間[-1,1]上的最大值為14.

(1)求fx)的表達式;

(2)求滿足fx)=7x的值.

查看答案和解析>>

同步練習(xí)冊答案