設雙曲線的頂點為,該雙曲線又與直線交于兩點,且為坐標原點)。
(1)求此雙曲線的方程;
(2)求
(1)(2)4

試題分析:解:∵雙曲線的頂點為,
∴可設雙曲線的方程為
,   
設A(),B(
時,顯然不滿足題意 
時, 
,∴,即
,∴, 經(jīng)驗證,此時,…9分
∴雙曲線的方程為 
(2)由(1)可得,

   
點評:關鍵是利用向量的關系式,結合坐標來得到雙曲線的方程,同事能結合韋達定理來得到弦長,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩定點E(-2,0),F(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線與曲線C交于A、B兩點,點N滿足
(O為原點),求四邊形OANB面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

存在兩條直線與雙曲線相交于ABCD四點,若四邊形ABCD是正方形,則雙曲線的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點為,準線與軸的交點為,點上且,則△的面積為(   )
A.4 B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的離心率為,過右焦點且斜率為的直線交橢圓兩點,為弦的中點,為坐標原點.
(1)求直線的斜率;
(2)求證:對于橢圓上的任意一點,都存在,使得成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點的直線交直線,過點的直線軸于點,,.
(1)求動點的軌跡的方程;
(2)設直線l與相交于不同的兩點,已知點的坐標為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的方程為左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設直線PA,PB的斜率分別為k1,k2,,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.

(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過點作拋物線的兩條切線,分別為兩個切點,設點到直線的距離為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的一個頂點與兩個焦點構成等邊三角形,則離心率e=________。

查看答案和解析>>

同步練習冊答案