精英家教網 > 高中數學 > 題目詳情
如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.

(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過點作拋物線的兩條切線,、分別為兩個切點,設點到直線的距離為,求的最小值.
(1)的方程為,其準線方程為.(2)

試題分析:解:(Ⅰ)的焦點為,                                    …2分
所以,.                                          …4分
的方程為,其準線方程為.                   …6分
(Ⅱ)設,,
的方程:,
所以,即
同理,,.             …8分
的方程:,

,得,.       …10分
所以直線的方程為.                            …12分
于是
,則(當時取等號).
所以,的最小值為.                                       …15分
點評:解決的關鍵是對于直線與拋物線的位置關系的運用,聯立方程組,結合韋達定理來求解,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設拋物線的焦點為,經過點的動直線交拋物線于點,.
(1)求拋物線的方程;
(2)若(為坐標原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準線上的一點,直線的斜率分別為.求證:
為定值時,也為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標準方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設雙曲線的頂點為,該雙曲線又與直線交于兩點,且為坐標原點)。
(1)求此雙曲線的方程;
(2)求

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,若橢圓上一點滿足,則橢圓的離心率(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過橢圓左焦點F且傾斜角為的直線交橢圓于A、B兩點,若,則橢圓的離心率為(    )
A.              B.              C.                D. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

為雙曲線的左右焦點,點P在雙曲線上,的平分線分線段的比為5∶1,則雙曲線的離心率的取值范圍是           .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

(1)已知 的圖象為雙曲線,在雙曲線的兩支上分別取點,則線段的最小值為    
(2)已知 的圖象為雙曲線,在此雙曲線的兩支上分別取點,則線段的最小值為   。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

方程+=1({1,2,3,4, ,2013})的曲線中,所有圓面積的和等于       ,離心率最小的橢圓方程為                      .

查看答案和解析>>

同步練習冊答案