【題目】如果一個(gè)三位數(shù)abc同時(shí)滿(mǎn)足且,則稱(chēng)該三位數(shù)為“凹數(shù)”,那么所有不同的三位“凹數(shù)”的個(gè)數(shù)是______.
【答案】285
【解析】
根據(jù)題意可得十位比百位小,并且十位比個(gè)位小,因此首先對(duì)十位依次進(jìn)行分類(lèi)討論,分別求出每種情況的“凹數(shù)”的個(gè)數(shù),由加法原理計(jì)算可得答案.
根據(jù)題意,按十位數(shù)字分類(lèi)討論:
十位數(shù)字是9時(shí)不存在,此時(shí)三位“凹數(shù)”的個(gè)數(shù)為0;
十位數(shù)字是8,只有989,此時(shí)三位“凹數(shù)”的個(gè)數(shù)為1;
十位數(shù)字是7,則百位與個(gè)位都有2種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是6,則百位與個(gè)位都有3種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是5,則百位與個(gè)位都有4種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是4時(shí),則百位與個(gè)位都有5種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是3時(shí),則百位與個(gè)位都有6種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是2時(shí),則百位與個(gè)位都有7種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是1時(shí),則百位與個(gè)位都有8種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為;
十位數(shù)字是0時(shí),則百位與個(gè)位都有9種可能,所以此時(shí)三位“凹數(shù)”的個(gè)數(shù)為,
所以所有不同的三位“凹數(shù)”的個(gè)數(shù)是個(gè),
故答案為:285.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在高二數(shù)學(xué)競(jìng)賽初賽后,對(duì)90分及以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若分?jǐn)?shù)段的參賽學(xué)生人數(shù)為2.
(1)求該校成績(jī)?cè)?/span>分?jǐn)?shù)段的參賽學(xué)生人數(shù);
(2)估計(jì)90分及以上的學(xué)生成績(jī)的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù)),.
(1)若,求的極值;
(2)對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.
(3)對(duì)任意證明:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B以及CD的中點(diǎn)P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長(zhǎng)度最短,并求出最短值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高一年級(jí)某個(gè)班分成7個(gè)小組,利用假期參加社會(huì)公益服務(wù)活動(dòng)每個(gè)小組必須全員參加,參加活動(dòng)的次數(shù)記錄如下:
組別 | |||||||
參加活動(dòng)次數(shù) | 3 | 2 | 4 | 3 | 3 | 4 | 2 |
Ⅰ求該班的7個(gè)小組參加社會(huì)公益服務(wù)活動(dòng)數(shù)的中位數(shù)及與平均數(shù)v;
Ⅱ從這7個(gè)小組中隨機(jī)選出2個(gè)小組在全校進(jìn)行活動(dòng)匯報(bào),求“選出的2個(gè)小組參加社會(huì)公益服務(wù)活動(dòng)次數(shù)相等”的概率.
Ⅲ至小組每組有4名同學(xué),小組有5名同學(xué),記“該班學(xué)參加社會(huì)公益服務(wù)活動(dòng)的平均次數(shù)”為,寫(xiě)出與v的大小關(guān)系結(jié)論不要求證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
若函數(shù)在處的切線與直線垂直,求實(shí)數(shù)a的值;
討論函數(shù)的單調(diào)區(qū)間與極值;
若函數(shù)有兩個(gè)零點(diǎn),求滿(mǎn)足條件的最小整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下圖頻率分布直方圖:
(I)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(II)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶(hù)從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.
附:
若則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰梯形,,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2).
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com