【題目】已知三角形的三內(nèi)角A、B、C所對邊的長分別為a、b、c,設(shè)向量 , ,若 .
(1)求角B的大。
(2)若△ABC的面積為 ,求AC邊的最小值,并指明此時三角形的形狀.
【答案】
(1)解: ,∵ ,∴(2a﹣c)cosB=bcosC.
由正弦定理得:(2sinA﹣sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinCcosB+sinBcosC,
即2sinAcosB=sin(B+C)=sinA,∵sinA>0,∴ .
∵0<B<π,∴ .
(2)解:由已知得: ,∴ac=4.
由余弦定理,b2=a2+c2﹣2accosB=a2+c2﹣ac≥2ac﹣ac=ac,當(dāng)且僅當(dāng)“a=c”時取等號.
∴AC的最小值為2,此時三角形為等邊三角形
【解析】(1)利用兩個向量共線的性質(zhì)、正弦定理可得2sinAcosB=sin(B+C)=sinA,由sinA>0,求得 ,從而求得B的值.(2)由△ABC的面積為 ,求得ac=4,再利用余弦定理以及基本不等式求出AC的最小值.
【考點精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時,函數(shù)有且只有一個零點,求實數(shù)的值;
(3若,對于區(qū)間上的任意兩個不相等的實數(shù),都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在圓: 上,而為在軸上的投影,且點滿足,設(shè)動點的軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上兩點,且, 為坐標(biāo)原點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某社區(qū)工會對當(dāng)?shù)仄髽I(yè)工人月收入情況進行一次抽樣調(diào)查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為( )
A.1000
B.2000
C.3000
D.4000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCED中,PD⊥面ABCD,四邊形ABCD為平行四邊形,∠DAB=60°,AB=PA=2AD=4,
(1)若E為PC中點,求證:PA∥平面BDE
(2)求三棱錐D﹣BCP的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com