【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線與的兩個(gè)交點(diǎn)間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過作滿足,設(shè)與的上半部分分別交于兩點(diǎn),求四邊形面積的最大值.
【答案】(Ⅰ);(Ⅱ)3.
【解析】(Ⅰ)由已知,根據(jù)橢圓對(duì)稱性易知橢圓過點(diǎn),結(jié)合離心率及,即可求出橢圓方程;(Ⅱ)根據(jù)題意可設(shè)直線,,由弦長(zhǎng)公式可求出被橢圓截得的弦長(zhǎng),由點(diǎn)到直線距離公式可求出點(diǎn)到直線距離,從而可得的面積,并求出其最大值,由橢圓對(duì)稱性可知四邊形面積與的面積,從而問題得解.
試題解析:(Ⅰ)易知橢圓過點(diǎn),所以, ①
又, ②
, ③
③得,,
所以橢圓的方程為.
(Ⅱ)設(shè)直線,它與的另一個(gè)交點(diǎn)為.
與聯(lián)立,消去,得,
.
,
又到的距離為,
所以.
令,則,所以當(dāng)時(shí),最大值為3.又
所以四邊形面積的最大值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對(duì)應(yīng)年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)年該企業(yè)污水凈化量;
(3)請(qǐng)用數(shù)據(jù)說明回歸方程預(yù)報(bào)的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).現(xiàn)提供的大致圖像的8個(gè)選項(xiàng):
(A)(B)(C)(D)
(E)(F)(G)(H)
(Ⅰ)請(qǐng)你作出選擇,你選的是( );
(Ⅱ)對(duì)于函數(shù)圖像的判斷,往往只需了解函數(shù)的基本性質(zhì).為了驗(yàn)證你的選擇的正確性,請(qǐng)你解決下列問題:
①的定義域是 ;
②就奇偶性而言, 是 ;
③當(dāng)時(shí), 的符號(hào)為正還是負(fù)?并證明你的結(jié)論.
(解決了上述三個(gè)問題,你要調(diào)整你的選項(xiàng),還來得及.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn),對(duì)任意實(shí)數(shù)滿足,且函數(shù)的最小值為2.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值;
(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù).
(1)求點(diǎn)P在直線y=x上的概率.
(2)求點(diǎn)P不在直線y=x+1上的概率.
(3)求點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工科院校對(duì)A,B兩個(gè)專業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:
專業(yè)A | 專業(yè)B | 總計(jì) | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
總計(jì) | 50 | 50 | 100 |
(1)從B專業(yè)的女生中隨機(jī)抽取2名女生參加某項(xiàng)活動(dòng),其中女生甲被選到的概率是多少?
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系呢?
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓臺(tái)中,AC是下底面圓O的直徑,EF是上底面圓O的直徑,FB是圓臺(tái)的一條母線.
(Ⅰ)已知G,H分別為EC,FB的中點(diǎn),求證:GH∥平面ABC;
(Ⅱ)已知EF=FB=AC=,AB=BC.求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有三個(gè)球,第一個(gè)球內(nèi)切于正方體的六個(gè)面,第二個(gè)球與這個(gè)正方體的各條棱相切,第三個(gè)球過這個(gè)正方體的各個(gè)頂點(diǎn),若正方體的棱長(zhǎng)為,求這三個(gè)球的表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com