【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運動時間在[40,60)上的學(xué)生評價為“課外體育達標(biāo)”.
(Ⅰ)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達標(biāo)”與性別有關(guān)?
課外體育不達標(biāo) | 課外體育達標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】解:列出列聯(lián)表,
課外體育不達標(biāo) | 課外體育達標(biāo) | 合計 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合計 | 150 | 50 | 200 |
(Ⅰ) ,
所以在犯錯誤的概率不超過0.01的前提下不能判斷“課外體育達標(biāo)”與性別有關(guān).
(Ⅱ)由表中數(shù)據(jù)可得,抽到“課外體育達標(biāo)”學(xué)生的頻率為0.25,將頻率視為概率,
∴X~B(3, ),
∴ .
【解析】(I)根據(jù)所給的數(shù)據(jù)列出列聯(lián)表,再代入公式計算得出K2 , 與臨界值比較即可得出結(jié)論;(II)由題意,用頻率代替概率可得出抽到“課外體育達標(biāo)”學(xué)生的頻率為0.25,由于X~B(3, ),由公式計算出期望與方差即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(),為自然對數(shù)的底數(shù),若曲線上存在點,使得,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
數(shù)學(xué) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對他前7次考試的數(shù)學(xué)成績x、物理成績y進行分析.下面是該生7次考試的成績.
(I)他的數(shù)學(xué)成績與物理成績哪個更穩(wěn)定?請給出你的證明;
(II)已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的物理成績達到115分,請你估計他的數(shù)學(xué)成績大約是多少?并請你根據(jù)物理成績與數(shù)學(xué)成績的相關(guān)性,給出該生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)當(dāng)時, 恒成立,求的最大值;
(3)設(shè),若在的值域為,求的取值范圍.(提示: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時每臺空調(diào)器僅獲利潤200元. (Ⅰ)若該商場周初購進20臺空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調(diào)器,X表示當(dāng)周的利潤(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是 ;從袋中任意摸出2個球,至少得到1個白球的概率是 . (Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于 .并指出袋中哪種顏色的球個數(shù)最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中邊長為1,P、Q分別為BC、CD上的點,△CPQ周長為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2ax﹣ +lnx,若f(x)在x=1,x= 處取得極值, (Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[ ,2]上的單調(diào)區(qū)間
(Ⅲ)在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com