【題目】已知函數(shù)
(I)討論函數(shù)的單調(diào)性;
(II)當(dāng)時(shí),證明(其中e為自然對(duì)數(shù)的底數(shù))
【答案】(I)答案不唯一,具體見(jiàn)解析(II)證明見(jiàn)解析;
【解析】
(I)求導(dǎo),分及,討論與0的關(guān)系,得出函數(shù)的單調(diào)性;
(II) 依題意,只需證明,令,利用導(dǎo)數(shù)求其最小值大于0即可得證.
(I)由題意,函數(shù)的定義域?yàn)?/span>,
,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),或;;
當(dāng)時(shí),;
當(dāng)時(shí),或;.
綜上討論知:當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),在,上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在,上單調(diào)遞增,在上單調(diào)遞減.
(II)當(dāng)時(shí),由,只需證明,
令,.
設(shè),則.
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增,
∴當(dāng)時(shí),取得唯一的極小值,也是最小值.
的最小值是成立.
故成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a為常數(shù),函數(shù)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,則有( 。
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中e是自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的極大值為,求實(shí)數(shù)a的值;
(2)當(dāng)a=e時(shí),若曲線與在處的切線互相垂直,求的值;
(3)設(shè)函數(shù),若>0對(duì)任意的x(0,1)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,、分別是其左、右焦點(diǎn),過(guò)的直線與橢圓交于兩點(diǎn),且橢圓的離心率為,的周長(zhǎng)等于.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)突如其來(lái)的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國(guó)各地的白衣天使走上戰(zhàn)場(chǎng)的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護(hù)士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護(hù)士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護(hù)士被選在第一醫(yī)院工作的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)上購(gòu)物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場(chǎng)實(shí)體店近九年來(lái)的純利潤(rùn)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實(shí)體店純利潤(rùn)(千萬(wàn)) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.254;根據(jù)后5年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.985;
(1)如果要用線性回歸方程預(yù)測(cè)該商場(chǎng)2019年實(shí)體店純利潤(rùn),現(xiàn)有兩個(gè)方案:
方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測(cè);
方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測(cè).
從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適.
附:相關(guān)性檢驗(yàn)的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開(kāi)店的店主,據(jù)統(tǒng)計(jì),只開(kāi)網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開(kāi)網(wǎng)店又開(kāi)實(shí)體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開(kāi)實(shí)體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下(提示:可以用第(2)問(wèn)的結(jié)論),對(duì)任意的,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,為正三角形,為棱的中點(diǎn),,,平面平面
(1)求證:平面平面;
(2)若是棱上一點(diǎn),與平面所成角的正弦值為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期. 一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表
潛伏期天 | 潛伏期天 | 總計(jì) | |
歲以上(含歲) | |||
歲以下 | |||
總計(jì) |
(3)以這1000名患者的潛伏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛伏期超過(guò)6天發(fā)生的概率,每名患者的潛伏期是否超過(guò)6天相互獨(dú)立,為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了20名患者,其中潛伏期超過(guò)6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com