【題目】已知橢圓:的右焦點與短軸兩端點構(gòu)成一個面積為的等腰直角三角形,為坐標原點.
(1)求橢圓的方程;
(2)設(shè)點在橢圓上,點在直線上,且,求證:為定值;
(3)設(shè)點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.
【答案】(1)
(2)證明見解析
(3)
【解析】
(1)由橢圓的右焦點與短軸兩端點構(gòu)成一個面積為2的等腰直角三角形,求出,,由此能求出橢圓的方程.
(2)設(shè),,則的方程,由,得,,由此能證明為定值.
(3)設(shè),,,由,得,又點在橢圓上,得:,從而,,由此能求出點軌跡方程.
解:(1)橢圓的右焦點與短軸兩端點構(gòu)成一個面積為2的等腰直角三角形,為坐標原點,
,,
橢圓的方程為.
證明:(2)設(shè),,則的方程,
由,得,,
,
為定值.
解:(3)設(shè),,,由,得,①
又點在橢圓上,得:,②
聯(lián)立①②,得:,,③
由,得,
,
,
化簡,得點軌跡方程為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定理:在圓錐曲線中,是拋物線的一條弦,是的中點,過點且平行于軸的直線與拋物線的交點為.若兩點縱坐標之差的絕對值,則的面積,試運用上述定理求解以下各題:
(1)若,所在直線的方程為,是的中點,過且平行于軸的直線與拋物線的交點為,求;
(2)已知是拋物線的一條弦,是的中點,過點且平行于軸的直線與拋物線的交點為,分別為和的中點,過且平行于軸的直線與拋物線分別交于點,若兩點縱坐標之差的絕對值,求和;
(3)請你在上述問題的啟發(fā)下,設(shè)計一種方法求拋物線:與弦圍成成的“弓形”的面積,并求出相應(yīng)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為、,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的“曲徑”,下列定義域是上的函數(shù)中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點在線段上移動,有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果對任意,恒有成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當時,,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當時,,求證:函數(shù)在上無零點;
(3)已知函數(shù)為階縮放函數(shù),且當時, 的取值范圍是,求在上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果實系數(shù)、、和、、都是非零常數(shù).
(1)設(shè)不等式和的解集分別是、,試問是的什么條件?并說明理由.
(2)在實數(shù)集中,方程和的解集分別為和,試問是的什么條件?并說明理由.
(3)在復(fù)數(shù)集中,方程和的解集分別為和,證明:是的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由兩個橢圓:和橢圓:組成,當成等比數(shù)列時,稱曲線為“貓眼曲線”.
(1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關(guān)的定值;
(3)若斜率為的直線為橢圓的切線,且交橢圓于點,為橢圓上的任意一點(點與點不重合),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中是自然對數(shù)的底數(shù).
(1)求函數(shù)在點處的切線方程;
(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com