【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,Sn+1﹣2Sn=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=n+ ,求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:a1=1,Sn+1﹣2Sn=1,

即為Sn+1+1=2(Sn+1),

即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,

則Sn+1=22n1=2n,

即Sn=2n﹣1,n∈N*,

當n≥2時,an=Sn﹣Sn1=2n﹣1﹣(2n1﹣1)=2n1,

上式對n=1也成立,

則數(shù)列{an}的通項公式為an=2n1,n∈N*


(2)解:bn=n+ =n+n( n1

前n項和Tn=(1+2+3+…+n)+[11+2( )+3( 2+…+n( n1],

設Mn=11+2( )+3( 2+…+n( n1

Mn=1 +2( 2+3( 3+…+n( n,

相減可得, Mn=1+ +( 2+( 3+…+( n1﹣n( n

= ﹣n( n,

化簡可得Mn=4﹣(n+2)( n1

則Tn= n(n+1)+4﹣(n+2)( n1


【解析】(1)由題意可得Sn+1+1=2(Sn+1),即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,運用等比數(shù)列的通項公式和數(shù)列的遞推式,可得所求通項公式;(2)求出bn=n+ =n+n( n1 , 運用數(shù)列的求和方法:分組求和和錯位相減法,結合等差數(shù)列和等比數(shù)列的求和公式,化簡計算即可得到所求和.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)若函數(shù) 在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達式(不必寫出證明過程);
(2)由(1)寫出數(shù)列{bn}的前n項和Sn , 并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,根據(jù)如圖的框圖所打印出數(shù)列的第四項是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點數(shù),問:
(1)共有多少種不同的結果?
(2)兩枚骰子點數(shù)之和是3的倍數(shù)的結果有多少種?
(3)兩枚骰子點數(shù)之和是3的倍數(shù)的概率為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)節(jié)能降耗技術改造后,在生產某產品過程中幾錄的產量x(噸)與相應的生產能耗y(噸)的幾 組對應數(shù)據(jù)如表所示:

x

3

4

5

6

y

2.5

3

4

a

若根據(jù)表中數(shù)據(jù)得出y關于x的線性回歸方程為 =0.7x+0.35,則表中a的值為(
A.3
B.3.15
C.3.5
D.4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,2),B(4,6), =t1 +t2 ,其中t1、t2為實數(shù);
(1)若點M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當t1=1時,不論t2為何值,A、B、M三點共線;
(3)若t1=a2 ,且△ABM的面積為12,求a和t2的值.

查看答案和解析>>

同步練習冊答案