【題目】已知x1是函數(shù)fx)=mx33m+1x2+nx+1的一個(gè)極值點(diǎn),其中m,nRm0

1)求mn的關(guān)系表達(dá)式;

2)求fx)的單調(diào)區(qū)間;

3)當(dāng)x[1,1]時(shí),函數(shù)yfx)的圖象上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍.

【答案】1n3m+6.(2fx)在(﹣,1)單調(diào)遞減,在(1,1)單調(diào)遞增,在(1,+∞)單調(diào)遞減.(3m0

【解析】

1)求出fx),因?yàn)?/span>x1是函數(shù)的極值點(diǎn),所以得到f'1)=0求出mn的關(guān)系式;

2)令fx)=0求出函數(shù)的極值點(diǎn),討論函數(shù)的增減性確定函數(shù)的單調(diào)區(qū)間;

3)由題意知fx)>3mx1x≠1,當(dāng)x≠1時(shí)gt)=t,求出gt)的最小值.要使x1恒成立即要gt)的最小值,解出不等式的解集求出m的范圍.

1fx)=3mx26m+1x+n

因?yàn)?/span>x1fx)的一個(gè)極值點(diǎn),所以f'1)=0,即3m6m+1+n0

所以n3m+6

2)由(1)知fx)=3mx26m+1x+3m+63mx1[x﹣(1]

當(dāng)m0時(shí),有11,當(dāng)x變化時(shí)fx)與f'x)的變化如下表:

x

(﹣,1

1

1,1

1

1+∞

fx

0

0

0

0

0

fx

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

由上表知,當(dāng)m0時(shí),fx)在(﹣,1)單調(diào)遞減,在(11)單調(diào)遞增,在(1+∞)單調(diào)遞減.

3)由已知,得fx)>3m,即3mx1[x﹣(1]3m,

m0.∴(x1[x11]1.(*

x1時(shí).(*)式化為01恒成立.

m0

x≠1時(shí)∵x[1,1],∴﹣2≤x10

*)式化為x1

tx1,則t[2,0),記gt)=t,

gt)在區(qū)間[20)是單調(diào)增函數(shù).∴gtming(﹣2)=﹣2

由(*)式恒成立,必有m,又m0.∴m0

綜上①②知m0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿(mǎn)意度,從在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿(mǎn)分均為60分.

整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”如下:

分?jǐn)?shù)

滿(mǎn)意度指數(shù)

(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿(mǎn)意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿(mǎn)意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.

1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)為1,求該塹堵的體積;

2)在塹堵中,如圖2,,若,當(dāng)陽(yáng)馬的體積最大時(shí),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?/span>13秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.

1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);

2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng),求證;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,橢圓的右焦點(diǎn),直線過(guò)橢圓的右頂點(diǎn),與橢圓交于另一點(diǎn),與軸交于點(diǎn).

1)求橢圓的方程;

2)若為弦的中點(diǎn),是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

3)若,交橢圓于點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線1(a0,b0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)O為雙曲線的中心,點(diǎn)P在雙曲線右支上,PF1F2內(nèi)切圓的圓心為Q,圓Qx軸相切于點(diǎn)A,過(guò)F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列幾個(gè)命題:①若,則;②,則互為相反數(shù)的否命題;③的逆命題;④,則互為倒數(shù)的逆否命題. 其中真命題的序號(hào)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。

(1)求居民月收入在[3000,3500)內(nèi)的頻率;

(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案