【題目】已知函數(shù),其中.

1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;

2)討論函數(shù)的單調(diào)性;

3)若對(duì)于任意的,不等式上恒成立,求的取值范圍.

【答案】1)函數(shù)的解析式為;(2)當(dāng)時(shí), 內(nèi)是增函數(shù);當(dāng)時(shí), 內(nèi)是增函數(shù),在, 內(nèi)是減函數(shù);(3.

【解析】試題(1)先求出導(dǎo)函數(shù),進(jìn)而根據(jù)曲線在點(diǎn)處的切線方程為得到,從中可求解出的值,進(jìn)而可確定函數(shù)的解析式;(2)針對(duì)導(dǎo)函數(shù),對(duì)、兩類,由導(dǎo)數(shù)大于零求出函數(shù)的單調(diào)增區(qū)間,由導(dǎo)數(shù)小于零可求出函數(shù)的單調(diào)遞減區(qū)間;(3)要使對(duì)于任意的,不等式上恒成立,只須,由(2)的討論,確定函數(shù),進(jìn)而得到不等式,該不等式組對(duì)任意的成立,從中可求得.

1,由導(dǎo)數(shù)的幾何意義得,于是

由切點(diǎn)在直線上可得,解得

所以函數(shù)的解析式為3

2)因?yàn)?/span>

當(dāng)時(shí),顯然,這時(shí)內(nèi)是增函數(shù)

當(dāng)時(shí),令,解得

當(dāng)變化時(shí), , 的變化情況如下表:

















極大值



極小值


所以, 內(nèi)是增函數(shù),在內(nèi)是減函數(shù).......7

3)由(2)知, 上的最大值為中的較大者,對(duì)于任意的,不等式上恒成立,當(dāng)且僅當(dāng)對(duì)任意的成立,從而得,所以滿足條件的的取值范圍是.................13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)為,點(diǎn)在橢圓上,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱,直線的斜率的乘積為.

(1)求橢圓的方程;

(2)已知直線經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),若,判斷直線的斜率是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方體的棱長(zhǎng)為,為棱的中點(diǎn),分別是線段,,上的點(diǎn),若三棱錐的俯視圖如圖2,則三棱錐的體積最大值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為x軸,其準(zhǔn)線過點(diǎn).

(1)求拋物線C的方程;

(2)過拋物線焦點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線l的距離都為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校對(duì)高二600名學(xué)生進(jìn)行了一次知識(shí)測(cè)試,并從中抽取了部分學(xué)生的成績(jī)(滿分100)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

 

 數(shù)

 

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

 

[80,90)

 

 

[90,100]

14

0.28

 計(jì)

 

1.00

(1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);

(2)請(qǐng)你估算該年級(jí)學(xué)生成績(jī)的中位數(shù);

(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在[60,70)[80,90)的人中共抽取6,再從6人中選2,2人分?jǐn)?shù)都在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有臺(tái)大型機(jī)器,在個(gè)月中,臺(tái)機(jī)器至多出現(xiàn)次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺(tái)機(jī)器的能力,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬元的利潤(rùn),否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校抽取了100名學(xué)生期中考試的英語和數(shù)學(xué)成績(jī),已知成績(jī)都不低于100分,其中英語成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間是,,,.

1)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生英語成績(jī)的平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

2)若這100名學(xué)生數(shù)學(xué)成績(jī)分?jǐn)?shù)段的人數(shù)y的情況如下表所示:

分組區(qū)間

y

15

40

40

m

n

且區(qū)間內(nèi)英語人數(shù)與數(shù)學(xué)人數(shù)之比為,現(xiàn)從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取2人,求選出的2人中恰好有1人數(shù)學(xué)成績(jī)?cè)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

(2)若,且函數(shù)上是單調(diào)函數(shù),求實(shí)數(shù)的值;

(3)若,若當(dāng)時(shí),總有,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:

類行業(yè):8582,7778,83,87;

類行業(yè):76,67,80,85,7981;

類行業(yè):8789,76,86,75,8490,82

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案