【題目】如圖1,已知正方體的棱長為,為棱的中點(diǎn),分別是線段,,上的點(diǎn),若三棱錐的俯視圖如圖2,則三棱錐的體積最大值為( )

A.B.C.D.

【答案】D

【解析】

通過俯視圖可確定MQ為所在棱中點(diǎn),由線面關(guān)系可確定當(dāng)NC重合時(shí),N到平面PQM的距離最大.由截面圖形ACC1A1中的線線關(guān)系可知CE,再求出三角形PQM的面積,代入棱錐體積公式求解.

由俯視圖知,MA1D1的中點(diǎn),QA1B1的中點(diǎn),NCC1上任意一點(diǎn),

如圖1所示:由中位線可知:PQAB1,MPAD1,且,,

∴平面PMQ∥平面AB1D1,由正方體中線面關(guān)系可知:A1C⊥平面AB1D1,∴A1C⊥平面PMQ,

∴當(dāng)NC重合,點(diǎn)N到平面PMQ的距離最大,截面ACC1A1如圖2所示,其中平面ACC1A1平面PMQPS,

平面ACC1A1平面AB1D1AT,則,∴CE,

A1C,∴最大值為CEA1C

,∴三棱錐PMNQ的體積最大值為

故選:D

1 2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

附:的觀測值

0.05

0.01

0.001

3.841

6.635

10.828

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)在犯錯(cuò)誤的概率不超過0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了勾股圓方圖,亦稱趙爽弦圖(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成).類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;

2)討論函數(shù)的單調(diào)性;

3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對年利率為的連續(xù)復(fù)利,要在年后達(dá)到本利和,則現(xiàn)在投資值為,是自然對數(shù)的底數(shù).如果項(xiàng)目的投資年利率為的連續(xù)復(fù)利.

(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)

(2)一個(gè)家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項(xiàng)目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)

查看答案和解析>>

同步練習(xí)冊答案