已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關(guān)于直線對稱,當時,f(x)=sinx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能 為( )
A.
B.-π
C.
D.
【答案】分析:(Ⅲ)作函數(shù)f(x)的圖象,分析函數(shù)的圖象得到函數(shù)的性質(zhì),分類討論后,結(jié)合方程在a取某一確定值時所求得的所有解的和記為S,即可得到答案
解答:解:作函數(shù)f(x)的圖象(如圖),

顯然,若f(x)=a有解,則a∈[-1,0]
,f(x)=a有4解,S=-π②
,f(x)=a有三解,S=-
或a=-1,f(x)=a有2解,S=
故選A.
點評:本題考查的知識點是函數(shù)解析式的求法--圖象變換法,根的存在性及根的個數(shù)的判斷,其中根據(jù) y=f(x)的圖象關(guān)于直線對稱,當時,函數(shù)f(x)=sinx.根據(jù)對稱變換法則,求出函數(shù)的解析式是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M 成立,則稱f(x)是D上的有界函數(shù),其中M稱為函f(x)的一個上界.
已知函數(shù)f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函數(shù)g(x)為奇函數(shù),求實數(shù)a的值;
(2)在(1)的條件下,求函數(shù)g(x),在區(qū)間[
5
3
,3]上的所有上界構(gòu)成的集合;
(3)若函數(shù)g(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 北師大課標高一版(必修3) 2009-2010學年 第32期 總188期 北師大課標版 題型:013

下列算法:

①求和:1+2+3+…+1000;

②已知兩個數(shù)求它們的商;

③已知函數(shù)定義在區(qū)間上,將區(qū)間十等分求端點及各分點處的函數(shù)值;

④已知三角形的一邊長及此邊上的高,求其面積.其中可能要用到循環(huán)結(jié)構(gòu)的是

[  ]
A.

①②

B.

①③

C.

①④

D.

③④

查看答案和解析>>

科目:高中數(shù)學 來源:大連二十三中學2011學年度高二年級期末測試試卷數(shù)學(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省高二下學期期末考試理科數(shù)學試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

同步練習冊答案