設(shè)xy,z∈R,且滿足:x2y2z2=1,x+2y+3z,則xyz=________.
由柯西不等式,得
(x2y2z2)(12+22+32)≥(x+2y+3z)2
∴(x+2y+3z)2≤14,則x+2y+3z
x+2y+3z,
x
因此xy,z
于是xyz.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)f(n)=1+,當(dāng)n≥2,nN*時(shí),用數(shù)學(xué)歸納法證明:n+f(1)+f(2)+…+f(n-1)=nf(n)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013•浙江)如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

證明:能被整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(不等式選講)
用數(shù)學(xué)歸納法證明不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)正數(shù),
(1)滿足,求證:
(2)若,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a,b均為正數(shù)且的最大值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—5;不等式選講
已知f(x)=x|x-a|-2
(1)當(dāng)a=1時(shí),解不等式f(x)<|x-2|
(2)當(dāng)x∈(0,1]時(shí),f(x)<x2-1恒成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案