【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn的最小值.

【答案】
解:(1)設(shè)等差數(shù)列{an}的公差為d.
∵a2+a8=﹣4,a6=2,∴,解得,
∴an=a1+(n﹣1)d=﹣18+4(n﹣1)=4n﹣22.
(2)令an≥0,即4n﹣22≥0,解得n≥6,
可知當(dāng)n=5時(shí),Sn取得最小值,=﹣50.
【解析】(1)設(shè)等差數(shù)列{an}的公差為d,由a2+a8=﹣4,a6=2,利用通項(xiàng)公式可得 , 解得即可.
(2)令an≥0,即4n﹣22≥0,解得n≥6,可知當(dāng)n=5時(shí),Sn取得最小值,利用前n項(xiàng)和公式即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)等差數(shù)列的前n項(xiàng)和公式的理解,了解前n項(xiàng)和公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓O:x2+y2=1與x軸正半軸的交點(diǎn),半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π),
(1)若 ,求點(diǎn)B的坐標(biāo);
(2)求函數(shù)f(x)的最小值,并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?

(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C過(guò)點(diǎn)A(﹣ ,1),且與x2﹣3y2=1有相同的漸近線.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過(guò)雙曲線C的一個(gè)焦點(diǎn)作傾斜角為45°的直線l與雙曲線交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)在點(diǎn)處切線方程為y=3x+b,求a,b的值;

(Ⅱ)當(dāng)a>0時(shí),求函數(shù)在[1,2]上的最小值;

(Ⅲ)設(shè),若對(duì)任意 ,均存在,使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某港灣的平面示意圖如圖所示, , 分別是海岸線上的三個(gè)集鎮(zhèn), 位于的正南方向6km處, 位于的北偏東方向10km處.

(Ⅰ)求集鎮(zhèn) 間的距離;

(Ⅱ)隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上航線.勘測(cè)時(shí)發(fā)現(xiàn):以為圓心,3km為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行.請(qǐng)確定碼頭的位置,使得之間的直線航線最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + ﹣3 垂直;
當(dāng)k=時(shí),(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問(wèn)使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案