【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1)減區(qū)間為;增區(qū)間為;(2).
【解析】試題分析:
(1)當(dāng)時(shí), ,由可得函數(shù)的定義域?yàn)?/span>,結(jié)合圖象可得函數(shù)的減區(qū)間為,增區(qū)間為。(2)令,分兩種情況考慮。當(dāng)時(shí),若滿足題意則在上單調(diào)遞減,且;當(dāng)時(shí),若滿足題意則在上單調(diào)遞增,且。由此得到關(guān)于a的不等式組,分別解不等式組可得所求范圍。
試題解析:
(1)當(dāng)時(shí), ,
由,得,
解得或,
所以函數(shù)的定義域?yàn)?/span>,
結(jié)合圖象可得函數(shù)的減區(qū)間為,增區(qū)間為。
(2)令,則函數(shù)的圖象為開口向上,對稱軸為的拋物線,
①當(dāng)時(shí),
要使函數(shù)在區(qū)間上是增函數(shù),則在上單調(diào)遞減,且,
即,此不等式組無解。
②當(dāng)時(shí),
要使函數(shù)在區(qū)間上是增函數(shù),則在上單調(diào)遞增,且,
即,解得,
又,
∴,
綜上可得.
所以實(shí)數(shù)的取值范圍為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ= 時(shí),求二面角A﹣D1M﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的值域?yàn)?/span>.
(1)求的值;
(2)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計(jì)數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(2)根據(jù)改革方案,預(yù)計(jì)在2020年底城鎮(zhèn)化改革結(jié)束,到時(shí)候居民的生活用水量將趨于穩(wěn)定,預(yù)計(jì)該城市2023年的居民生活用水量.
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.
(1)若,且為真,為假,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對任意且≠0,不等式恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棱臺(tái)的三視圖與直觀圖如圖所示.
(1)求證:平面平面;
(2)在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?若存在,指出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個(gè)人去參加娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com