【題目】()已知三個(gè)點(diǎn),,,圓為的外接圓.
()求圓的方程.
()設(shè)直線,與圓交于,兩點(diǎn),且,求的值.
【答案】(1) (2)
【解析】
試題分析:(1)設(shè)出圓的一般式方程,代入三個(gè)點(diǎn)的坐標(biāo)聯(lián)立方程組求得D,E,F(xiàn)的值,則圓的方程可求;(2)由(1)得圓M的圓心為(-4,3),半徑為5,結(jié)合弦長(zhǎng)求得圓心到直線的距離,由點(diǎn)到直線的距離公式列式求得m的值.
解析:
()由題意得:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0,
由已知,點(diǎn)A(﹣1,﹣1),B(﹣8,0),C(0,6)的坐標(biāo)滿足上述方程,
分別代入方程,可得,
解得:D=8,E=﹣6,F(xiàn)=0,
所求圓的方程為:x2+y2+8x﹣6y=0,化為標(biāo)準(zhǔn)方程為:(x+4)2+(y﹣3)2=25,
∴圓的方程為.
()圓心到直線的距離,
∵弦長(zhǎng),
∴有勾股定理得,
即,
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于簡(jiǎn)單幾何體的說法中正確的是( )
①有兩個(gè)面互相平行,其余各面都是平行四邊形的多面體是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐;
③在斜二測(cè)畫法中,與坐標(biāo)軸不平行的線段的長(zhǎng)度在直觀圖中有可能保持不變;
④有兩個(gè)底面平行且相似其余各面都是梯形的多面體是棱臺(tái);
⑤空間中到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合是球面.
A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[0, ]
D.[0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 ,S7=56.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足b1=a1且bn+1﹣bn=an+1 , 求數(shù)列 的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及直線,直線被圓截得的弦長(zhǎng)為.
()求實(shí)數(shù)的值.
()求過點(diǎn)并與圓相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)M(1,0)和直線x=﹣1上的動(dòng)點(diǎn)N(﹣1,t),線段MN的垂直平分線交直線y=t于點(diǎn)R,設(shè)點(diǎn)R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點(diǎn)C,交曲線E于不同的兩點(diǎn)A,B,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)P.點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)為Q,求證:A,P,Q三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com