已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為.從這個(gè)圓上任意一點(diǎn)軸作垂線為垂足.
(Ⅰ)求線段中點(diǎn)的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點(diǎn),求的面積

(1);(2)

解析試題分析:(1)本題一般用動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程,設(shè)動(dòng)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,而點(diǎn)又是已知圓的點(diǎn),把點(diǎn)坐標(biāo)代入圓的方程即能求出動(dòng)點(diǎn)的軌跡方程;(2)直接列方程組求出交點(diǎn)的坐標(biāo),然后選用相應(yīng)面積公式計(jì)算面積(本題中以O(shè)B為底,高就是點(diǎn)A的縱坐標(biāo)的絕對(duì)值).
試題解析:(1)設(shè),         1分
由中點(diǎn)公式得:         3分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/7/bolb51.png" style="vertical-align:middle;" />在圓上,
的軌跡方程為        6分
(2)據(jù)已知        8分
        10分
        12分
考點(diǎn):(1)動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程;(2)三角形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線上任意一點(diǎn)到直線的距離是它到點(diǎn)距離的倍;曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中相交于點(diǎn),相交于點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn).(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時(shí)圓的方程;(4分)
(3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn),為坐標(biāo)原點(diǎn),求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)為動(dòng)點(diǎn),分別為橢圓的左、右焦點(diǎn).已知為等腰三角形.

(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于、兩點(diǎn),是直線上的點(diǎn),滿足,求點(diǎn)的軌跡
方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,以為圓心的圓相切于點(diǎn)的縱坐標(biāo)為,是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點(diǎn)A,B.
(I)如果直線l過拋物線的焦點(diǎn),求的值;
(II)如果,證明直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)過點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn).
(1)求軌跡的方程;
(2)證明:;
(3)若點(diǎn)到直線的距離等于,且的面積為20,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案