【題目】已知直角的三邊長,滿足.
(Ⅰ)在之間插入個數(shù),使這個數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求斜邊的最小值;
(Ⅱ)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且是正整數(shù).
【答案】(1)(2)(3)見解析
解:(Ⅰ)是等差數(shù)列, ,即.
,斜邊的最小值為 (當(dāng)且僅當(dāng)等號成立,
此時數(shù)列中, .
(Ⅱ)設(shè)的公差為,則,.
設(shè)三角形的三邊長為面積,
,
由得.
當(dāng)時, ,
經(jīng)檢驗(yàn)當(dāng)時, ,當(dāng)時, ,
綜上所述,滿足不等式的所有的值為.
(Ⅲ)證明:因?yàn)?/span>成等比數(shù)列, ,
因?yàn)?/span>為直角三角形的三邊長,知,
又,得,
于是,
,
則有,
故數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形.
因?yàn)?/span>
,
由,同理可得,
故對于任意的都有是正整數(shù).
【解析】試題分析:(Ⅰ) 是等差數(shù)列, ,即..
利用勾股定理與基本不等式的性質(zhì)即可得出.
(Ⅱ)設(shè)的公差為,則,.
設(shè)三角形的三邊長為面積,
,利用等差數(shù)列的求和公式可得.由得,經(jīng)過分類討論即可得出.
(Ⅲ)由成等比數(shù)列, ,因?yàn)?/span>為直角三角形的三邊長,
知,
又,,可得,再利用勾股定理進(jìn)行驗(yàn)證即可得出.
試題解析:
(Ⅰ)是等差數(shù)列, ,即.
,斜邊的最小值為 (當(dāng)且僅當(dāng)等號成立,
此時數(shù)列中, .
(Ⅱ)設(shè)的公差為,則,.
設(shè)三角形的三邊長為面積,
,
由得.
當(dāng)時, ,
經(jīng)檢驗(yàn)當(dāng)時, ,當(dāng)時, ,
綜上所述,滿足不等式的所有的值為.
(Ⅲ)證明:因?yàn)?/span>成等比數(shù)列, ,
因?yàn)?/span>為直角三角形的三邊長,知,
又,得,
于是,
,
則有,
故數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形.
因?yàn)?/span>
,
由,同理可得,
故對于任意的都有是正整數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在生物研究性學(xué)習(xí)中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是他在4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時期著名的數(shù)學(xué)家劉徽對推導(dǎo)特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個特殊數(shù)列的求和公式.這個題的大意是:一匹良馬和一匹駑馬由長安出發(fā)至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(,)的部分圖象如圖中實(shí)線所示,圖中圓C與的圖象交于M,N兩點(diǎn),且M在y軸上,則下列說法中正確的是( )
A.函數(shù)的最小正周期是2π
B.函數(shù)的圖象關(guān)于點(diǎn)成中心對稱
C.函數(shù)在單調(diào)遞增
D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,側(cè)面底面,60°, , 是中點(diǎn),點(diǎn)在側(cè)棱上.
(Ⅰ)求證: ;
(Ⅱ)是否存在,使平面 平面?若存在,求出,若不存在,說明理由.
(Ⅲ)是否存在,使平面?若存在,求出.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;
(3)若地區(qū)有萬居民,該平臺為了促進(jìn)消費(fèi),擬對消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計該平臺在地區(qū)擬投放的電子補(bǔ)貼總金額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)是函數(shù)的圖象的一個對稱中心,且點(diǎn)到該圖象的對稱軸的距離的最小值為.
①的最小正周期是;
②的值域?yàn)?/span>;
③的初相為;
④在上單調(diào)遞增.
以上說法正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件解三角形,有兩解的有( )
A.已知a,b=2,B=45°B.已知a=2,b,A=45°
C.已知b=3,c,C=60°D.已知a=2,c=4,A=45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com