過(guò)原點(diǎn)且與曲線y=相切的切線斜率為(    )

A.-1              B.-              C.-或-1              D.或-1

解析:設(shè)切點(diǎn)P(x0,y0),

∵y′=-,

∴x0=-15或x0=-3,故切線斜率k=-或k=-1.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量m=(2x-2,2-
3
y),n=(
3
y+2,x+1)
,且m∥n,
OM
=(x,y)
(O為坐標(biāo)原點(diǎn)).
(1)求點(diǎn)M的軌跡C的方程;
(2)是否存在過(guò)點(diǎn)F(1,0)的直線l與曲線C相 交于A、B兩點(diǎn),并且曲線C存在點(diǎn)P,使四邊形OAPB為平行四邊形?若存在,求出平行四邊形OAPB的面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過(guò)定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫(xiě)出計(jì)算過(guò)程,并求出結(jié)果,若同時(shí)選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無(wú)效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類(lèi)似的問(wèn)題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類(lèi)似的問(wèn)題的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省贛榆高級(jí)中學(xué)2007-2008學(xué)年度高三第三次階段考試數(shù)學(xué)試題(理) 題型:044

已知直線l過(guò)M(1,0)與拋物線x2=2y交于A、B兩相異點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足

(Ⅰ)求P點(diǎn)的軌跡C的方程;

(Ⅱ)若曲線C的切線斜率為λ,滿足,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量m=(2x-2,2-
3
y),n=(
3
y+2,x+1)
,且mn,
OM
=(x,y)
(O為坐標(biāo)原點(diǎn)).
(1)求點(diǎn)M的軌跡C的方程;
(2)是否存在過(guò)點(diǎn)F(1,0)的直線l與曲線C相 交于A、B兩點(diǎn),并且曲線C存在點(diǎn)P,使四邊形OAPB為平行四邊形?若存在,求出平行四邊形OAPB的面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過(guò)定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫(xiě)出計(jì)算過(guò)程,并求出結(jié)果,若同時(shí)選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無(wú)效,不予批閱):
①將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類(lèi)似的問(wèn)題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類(lèi)似的問(wèn)題的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案