【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a=2,b= ,求△ABC的面積.
【答案】
(1)解:由已知得﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,
即有sinAsinB﹣ sinAcosB=0,
因為sinA≠0,所以sinB﹣ cosB=0,又cosB≠0,
所以tanB= ,又0<B<π,所以B= .
(2)解:∵ ,∵ ,又a=2,
∴ ,∵a<b,∴ ,
∴sinC=sin(A+B)=sinAcosB+cosAsinB= ,
∴
【解析】(1)由已知利用誘導(dǎo)公式,兩角和差的余弦公式,求得tanB的值,可得B的值.(2)求得sinB、cosB的值,利用正弦定理求得sinA的值,可得cosA的值,從而求得sinC=sin(A+B)的值,進(jìn)而求得△ABC的面積 absinC的值.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當(dāng)x>0時,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調(diào)遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內(nèi)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)= .
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P表示一個點(diǎn),a,b表示兩條直線,α,β表示兩個平面,給出下列四個命題,其中正確的命題是( )
①P∈a,P∈αaα
②a∩b=P,bβaβ
③a∥b,aα,P∈b,P∈αbα
④α∩β=b,P∈α,P∈βP∈b.
A.①②
B.②③
C.①④
D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com