【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失T(單位:元),空氣質(zhì)量指數(shù)API為.在區(qū)間[0,100]對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;在區(qū)間(100,300]對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時(shí)造成的經(jīng)濟(jì)損失為200元,當(dāng)API為200時(shí),造成的經(jīng)濟(jì)損失為400元);當(dāng)API大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.
(1)試寫出函數(shù)T()的表達(dá)式:
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過(guò)600元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān).
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1) (2) (3)列聯(lián)表見(jiàn)解析,有95%的把握認(rèn)為空氣重度污染與供暖有關(guān)
【解析】試題分析:(1)根據(jù)在區(qū)間[0,100]對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;在區(qū)間(100,300]對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)API為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)API大于300時(shí)造成的經(jīng)濟(jì)損失為2000元,可得函數(shù)關(guān)系式;
(2)由200<S≤600,得150<x≤250,頻數(shù)為33,即可求出概率;
(3)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測(cè)值的公式,代入數(shù)據(jù)做出觀測(cè)值,同臨界值進(jìn)行比較,即可得出結(jié)論.
試題解析:
(1)根據(jù)題意,在區(qū)間[0,100]對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;
在區(qū)間(100,300]對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時(shí)造成的經(jīng)濟(jì)損失為200元,當(dāng)API為200時(shí),造成的經(jīng)濟(jì)損失為400元);
當(dāng)API大于300時(shí)造成的經(jīng)濟(jì)損失為2000元,
(2)設(shè)“在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過(guò)600元”為事件A,
設(shè)“在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過(guò)600元”為事件A;
由200<S≤600,得100<x≤175,頻數(shù)為33,
∴P(A)=;
(3)根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計(jì) | 85 | 15 | 100 |
觀測(cè)值 ,所以有95%的把握認(rèn)為空氣重度污染與供暖有關(guān)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= -,g(x)= .
(1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;
(2)若, ,函數(shù)滿足對(duì)任意(x1x2),都有恒成立,求的取值范圍;
(3)若,函數(shù)=f(x)+ g(x),且G()有兩個(gè)極值點(diǎn)x1,x2,其中x1,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊次,射擊命中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:
甲 | ||||
乙 |
(Ⅰ)若從甲的局比賽中,隨機(jī)選取局,求這局的得分恰好相等的概率.
(Ⅱ)如果,從甲、乙兩人的局比賽中隨機(jī)各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.
(Ⅲ)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為橢圓: 的右焦點(diǎn), , , 為橢圓的下、上、右三個(gè)頂點(diǎn), 與的面積之比為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試探究在橢圓上是否存在不同于點(diǎn), 的一點(diǎn)滿足下列條件:點(diǎn)在軸上的投影為, 的中點(diǎn)為,直線交直線于點(diǎn), 的中點(diǎn)為,且的面積為.若不存在,請(qǐng)說(shuō)明理由;若存在,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①將, , 三種個(gè)體按3:1:2的比例分層抽樣調(diào)查,若抽取的個(gè)體為12個(gè),則樣本容量為30;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、中位數(shù)相同;
③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;
④統(tǒng)計(jì)的10個(gè)樣本數(shù)據(jù)為95,105,114,116,120,120,122,125,130,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.
其中真命題為( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,是的中點(diǎn),是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(I)若平面,求;
(II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),將的圖象向左平移個(gè)單位長(zhǎng)度后得到的圖象,且在區(qū)間內(nèi)的最大值為.
(1)求實(shí)數(shù)的值;
(2)在中,內(nèi)角, , 的對(duì)邊分別是, , ,若,且,求的周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在分以下的學(xué)生后, 共有男生名,女生名,現(xiàn)采用分層抽樣的方法,從中抽取了名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為組, 得到如下頻數(shù)分布表.
(Ⅰ)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績(jī)與性別有關(guān);
(Ⅱ)規(guī)定分以上為優(yōu)分(含分),請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”,( ,其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com