【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.

1)求的值,并填寫下表(2000位參與投票分?jǐn)?shù)和人數(shù)分布統(tǒng)計);

滿意程度(分?jǐn)?shù))

人數(shù)

2)求市民投票滿意程度的平均分(各分?jǐn)?shù)段取中點值);

3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

【答案】1;填表見解析;(258.4;(3

【解析】

1)根據(jù)頻率直方圖,可以求出區(qū)間的人數(shù),再根據(jù)分層抽樣的比可以求出的值,然后根據(jù)頻率直方圖依次計算求解填表即可;

2)根據(jù)題意進行計算即可;

3)設(shè)5人中2位女性為,乙,3位男性為甲,,先列舉出基本事件,然后再列舉出男性甲或女性乙被選中的事件,最后利用古典概型計算公式進行求解即可.

1)易知投票滿意度分?jǐn)?shù)在區(qū)間的人數(shù)為

,解得

所以分?jǐn)?shù)在區(qū)間的人數(shù)分別為320,400,600,480.填入下表得:

滿意程度(分?jǐn)?shù))

人數(shù)

200

320

400

600

480

2)市民投票滿意程度的平均分為

3)設(shè)5人中2位女性為,乙,3位男性為甲,,則基本事件有(,甲),,(乙,甲),(乙,),(乙,),(,乙),(甲,),(甲,),10個,其中男性甲或女性乙被選中的事件有(,甲),(乙,甲),(乙,),(乙,),(,乙),(甲,),(甲,),共7個,所以男性甲或女性乙被選中的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知點是曲線上的任意一點,當(dāng)點到直線的距離最大時,求經(jīng)過點且與直線平行的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.

女生

男生

總計

獲獎

不獲獎

總計

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:

(2)用表示中的最大值,記,討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,四邊形是邊長為2的菱形,

1)證明:平面平面;

2)當(dāng)平面與平面所成銳二面角的余弦值,求直線與平面所成角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點F且傾斜角為的直線交拋物線于AB兩點,交其準(zhǔn)線于點C,且|AF|=|FC|,|BC|=2.

1)求拋物線C的方程;

2)直線l交拋物線CDE兩點,且這兩點位于x軸兩側(cè),與x軸交于點M,若·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工資條里顯紅利,個稅新政人民心我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收人個稅起征點專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及其對應(yīng)的稅率表如下:

舊個稅稅率表(個稅起征點3500元)

新個稅稅率表(個稅起征點5000元)

繳稅基數(shù)

每月應(yīng)納稅所得額(含稅)收入個稅起征點

稅率(%

每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除

稅率(%

1

不超過1500元的部分

3

不超過3000元的部分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

隨機抽取某市2020名同一收入層級的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計分析,預(yù)估他們2019年的人均月收入24000元,統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是;此外,他們均不符合其他專項附加扣除,新個稅政策下該市的專項附加扣除標(biāo)準(zhǔn)為:住房1000/月,子女教育每孩1000/月,贍養(yǎng)老人2000/月等.假設(shè)該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預(yù)估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入,根據(jù)樣本估計總體的思想,解決如下問題:

1)求在舊政策下該收入層級的從業(yè)者每月應(yīng)納的個稅;

2)設(shè)該市該收入層級的從業(yè)者2019年月繳個稅為X元,求X的分布列和期望;

3)根據(jù)新舊個稅方案,估計從20191月開始,經(jīng)過多少個月,該市該收入層級的從業(yè)者各月少繳納的個稅之和就超過2019年的人均月收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點S為正方形ABCD所在平面外一點,△SBC是邊長為2的等邊三角形,點E為線段SB的中點.

1)證明:SD//平面AEC;

2)若側(cè)面SBC⊥底面ABCD,求平面ACE與平面SCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C.

1)求橢圓C的離心率;

2)設(shè)分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當(dāng)點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案