【題目】已知函數(shù)

1若關(guān)于的方程在區(qū)間上有兩個(gè)不同的解

的取值范圍;

,求的取值范圍;

2設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達(dá)式

【答案】1)(iii;

2

【解析】

試題分析:1借助題設(shè)條件運(yùn)用函數(shù)的圖象和不等式的性質(zhì)求解;2借助題設(shè)運(yùn)用函數(shù)的性質(zhì)和分類整合思想探求

試題解析:

1

作出函數(shù)圖象,得,

的取值范圍是

,

則有,即,

,

的取值范圍是

2,

當(dāng)時(shí),有,上為減函數(shù),

當(dāng)時(shí),有,上為減函數(shù),在上為增函數(shù),

此時(shí),

當(dāng)時(shí),有,上為減函數(shù),在上為增函數(shù),

此時(shí),,,

當(dāng)時(shí),有,,上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

此時(shí),

,

當(dāng)時(shí),有,上為增函數(shù),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了擴(kuò)大該商品的影響力,提高年銷售量,公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元,公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:方程沒有實(shí)數(shù)根(),命題q:定義域?yàn)镽,若命題p為真命題,p 為假命題,求k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,,,的中點(diǎn).

)求直線所成角的余弦值;

)在側(cè)面內(nèi)找一點(diǎn),使,求N點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為,當(dāng)時(shí),函數(shù)取得最大值

1求函數(shù)的解析式,并寫出它的單調(diào)增區(qū)間;

2,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,ABAD,∠BAD60°,E,F分別是APAD的中點(diǎn).

求證:(1)直線EF∥平面PCD;

2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào).

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)

)求 的方程;

)直線不過原點(diǎn)O且不平行于坐標(biāo)軸,有兩個(gè)交點(diǎn),線段的中點(diǎn)為,證明:的斜率與直線的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,滿足:對于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_________

查看答案和解析>>

同步練習(xí)冊答案