已知(4,2)是直線l被橢圓所截得的線段的中點(diǎn),則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0
B
設(shè)直線l與橢圓相交于A(x1,y1),B(x2,y2).
,且,
兩式相減得
又x1+x2=8,y1+y2=4,
所以,故直線l的方程為y-2= (x-4),即x+2y-8=0.故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知P(x,y)為橢圓上一點(diǎn),F為橢圓C的右焦點(diǎn),若點(diǎn)M滿足,則的最小值為(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓E:的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( 。
A.       B.
C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓關(guān)于直線對(duì)稱(chēng).

(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說(shuō)明理由;
(3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則該橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓內(nèi)一點(diǎn)R(1,0)作動(dòng)弦MN,則弦MN中點(diǎn)P的軌跡是(  )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓M:的左,右焦點(diǎn)分別為,P為橢圓M上任一點(diǎn),且的最大值的取值范圍是,其中,則橢圓M的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左焦點(diǎn)為與過(guò)原點(diǎn)的直線相交于兩點(diǎn),連接,若,則橢圓的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓經(jīng)過(guò)點(diǎn)P(1.),離心率e=,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦(不經(jīng)過(guò)點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為.問(wèn):是否存在常數(shù)λ,使得?若存在,求λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案