過橢圓內(nèi)一點R(1,0)作動弦MN,則弦MN中點P的軌跡是(  )
A.圓B.橢圓C.雙曲線D.拋物線
B
設(shè)M(x1,y1),N(x2,y2),P(x,y),則,,
相減得4(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
將x1+x2=2x,y1+y2=2y,代入可知軌跡為橢圓,故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動圓圓心軌跡的方程;
(2)在曲線上有四個不同的點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點為F,A為短軸的一個端點,且,的面積為1(其中為坐標原點).
(1)求橢圓的方程;
(2)若CD分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知(4,2)是直線l被橢圓所截得的線段的中點,則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點,焦點在軸上,且長軸長為12,離心率為,則橢圓的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距為 (    )
A.10B.5C.D.

查看答案和解析>>

同步練習(xí)冊答案