精英家教網(wǎng)如圖,五面體A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角.
(Ⅰ)若D是AC中點,求證:AB1∥平面BDC1;
(Ⅱ)求該五面體的體積.
分析:(Ⅰ)連接B1C交BC1于O,連接DO,由三角形的中位線性質(zhì)可得  DO∥AB1 ,從而證明AB1∥平面BDC1
 (Ⅱ)過A作AH⊥BC,垂足為H,求出棱錐的高AH和矩形BCC1B1的面積,代入體積公式進行運算.
解答:精英家教網(wǎng)解:(Ⅰ)證明:連接B1C交BC1于O,連接DO,∵四邊形BCC1B1是矩形,
∴O為B1C中點又D為AC中點,從而,DO∥AB1
∵AB1?平面BDC1,DO?平面BDC1,∴AB1∥平面BDC1
(Ⅱ)過A作AH⊥BC,垂足為H,∵△ABC為正三角形,∴H為BC中點,AH=
AB2-BH2
=
3
,∵二面角A-BC-C1為直二面角,∴AH⊥面BCC1B1,又BB1=
A
B
2
1
-AB2
=2
3
,故矩形BCC1B1的面積S=BC•BB1=2×2
3
=4
3
,
故所求五面體體積V=VA-BCC1B1=
1
3
S•AH=
1
3
•4
3
3
=4
點評:本題考查證明線面平行的方法,求椎體的體積.證明 DO∥AB1 是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,五面體A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角.
(Ⅰ)D在AC上運動,當(dāng)D在何處時,有AB1∥平面BDC1,并且說明理由;
(Ⅱ)當(dāng)AB1∥平面BDC1時,求二面角C-BC1-D余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:五面體A-BCC1B1中,AB1=4,△ABC 是正三角形,AB=2,四邊形  BCC1B1是矩形,二面角A-BC-C1為直二面角,D為AC的中點.
(1)求證:AB1∥平面BDC1;
(2)求二面角C-BC1-D的大小;
(3)若A、B、C、C1為某一個球面上的四點,求該球的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,五面體A-BCC1B1中,AB1=4,底面ABC是正三角形,AB=2,四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角,D為AC的中點.
(1)證明:AB1∥平面BDC1;
(2)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)如圖,五面體ABCC1B1中,AB1=4,底面ABC是正三角形,AB=2,四邊形BCC1B1是矩形,二面角ABCC1為直二面角,DAC中點.

(1)求證:AB1∥面BDC1;(2)求二面角CBC1D的大;

(3)若A、B、C、C1為某一個球面上四點,求球的半徑.

查看答案和解析>>

同步練習(xí)冊答案