【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,點(diǎn)是曲線上的動(dòng)點(diǎn).點(diǎn)滿足 (為極點(diǎn)).設(shè)點(diǎn)的軌跡為曲線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與直線的普通方程;
(2)設(shè)直線交兩坐標(biāo)軸于,兩點(diǎn),求面積的最大值.
【答案】(1)的直角坐標(biāo)方程為,的普通方程是;(2).
【解析】試題分析:
(1)在極坐標(biāo)系中,設(shè)點(diǎn).由題意可得曲線的極方程為,化為直角坐標(biāo)方程得,消去參數(shù)可得直線的普通方程是.
(2)由直線的方程可得.設(shè),底邊上的高,,結(jié)合三角函數(shù)的性質(zhì)可得,則面積的最大值為.
試題解析:
(1)在極坐標(biāo)系中,設(shè)點(diǎn).
由,得,
代入曲線的方程并整理,
得,
再化為直角坐標(biāo)方程,得,
即曲線的直角坐標(biāo)方程為.
直線的參數(shù)方程(為參數(shù))化為普通方程是.
(2)由直線的方程為,可知.
因?yàn)辄c(diǎn)在曲線上,
所以設(shè),,
則點(diǎn)到直線的距離即為底邊上的高,
所以,其中,
所以,
所以,
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng),時(shí),求函數(shù)在上的最小值;
(2)若函數(shù)在與處的切線互相垂直,求的取值范圍;
(3)設(shè),若函數(shù)有兩個(gè)極值點(diǎn),,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查,A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的平方根成正比,其關(guān)系如圖2(注:?jiǎn)挝皇侨f元).
圖1 圖2
(1)若A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)分別為、,求出它們的表達(dá)式并注明定義域;
(2)現(xiàn)企業(yè)有20萬元資金全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這20萬元資金,能使獲得的利潤(rùn)最大,其最大利潤(rùn)是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系. 直線的極坐標(biāo)方程是.
(Ⅰ)求圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(Ⅱ)射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是函數(shù)(,)在區(qū)間上的圖象,將該函數(shù)圖象各點(diǎn)的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),再向右平移()個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于直線對(duì)稱,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,,為的中點(diǎn),為的中點(diǎn),點(diǎn)在線段上,且.
(1)求證:平面;
(2)若平面底面ABCD,且,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右頂點(diǎn)分別為,,點(diǎn)在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設(shè)直線不經(jīng)過點(diǎn)且與橢圓交于,兩點(diǎn),若直線與直線的斜率之積為,證明:直線過頂點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com