已知P是曲線y=2x2-1上的動(dòng)點(diǎn),定點(diǎn)A(0,-1),且點(diǎn)P不同于點(diǎn)A,若M點(diǎn)滿足
PM
=2
MA
,求點(diǎn)M的軌跡方程.
由題意,設(shè)P(x0,y0),M(x,y),
PM
=2
MA
,定點(diǎn)A(0,-1),
∴(x-x0,y-y0)=2(-x,-1-y),
∴x0=3x,y0=3y+2;
∵P是拋物線y=2x2-1上的動(dòng)點(diǎn),∴y0=2x02-1,
∴y=6x2-1.
故答案為:y=6x2-1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓G:過點(diǎn),C、D在該橢圓上,直線CD過原點(diǎn)O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與C交于A,B兩點(diǎn).k為何值時(shí)以AB為直徑的圓經(jīng)過原點(diǎn)O?此時(shí)|AB|的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是(  )
A.橢圓B.直線C.線段D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

矩形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,1),B(2,1),C(2,-1),D(-2,-1),過原點(diǎn)且互相垂直的兩條直線分別與矩形的邊相交于E、F、G、H四點(diǎn),則四邊形EGFH的面積的最小值為______,最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是拋物線C:y=
1
2
x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q.
(Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(-
3
,0),B(
3
,0)
,動(dòng)點(diǎn)P(x,y)滿足:||AP|-|BP||=2;
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)直線mx-y+1=0與動(dòng)點(diǎn)P的軌跡只有一個(gè)交點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)G滿足|GF1|+|GF2|=2
2

(Ⅰ)求動(dòng)點(diǎn)G的軌跡Ω的方程;
(Ⅱ)已知過點(diǎn)F2且與x軸不垂直的直線l交(Ⅰ)中的軌跡Ω于P、Q兩點(diǎn).在線段OF2上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長線交C于點(diǎn)D,且=2,則C的離心率為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案