【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線(xiàn)折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)正四棱柱形狀的包裝盒,在上,是被切去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)().
(1)某廣告商要求包裝盒的側(cè)面積最大,試問(wèn)應(yīng)取何值?
(2)某廠(chǎng)商要求包裝盒的容積最大,試問(wèn)應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.
【答案】(1)(2);高與底面邊長(zhǎng)的比值為
【解析】
(1)設(shè)包裝盒的底面邊長(zhǎng)為,高為,由題意得到,,,
根據(jù)側(cè)面積公式,得出,由二次函數(shù)的性質(zhì),即可得出最值;
(2)根據(jù)體積公式,由題意,得到,用導(dǎo)數(shù)的方法求出最值,即可得出結(jié)果.
(1)設(shè)包裝盒的底面邊長(zhǎng)為,高為,
則由題意可得,,,
所以,
∴當(dāng)時(shí),取得最大值
(2)根據(jù)題意,由(1)有
∴
由得,(舍)或.
∴當(dāng)時(shí);當(dāng)時(shí),
∴當(dāng)時(shí)取得極大值,也是最大值,此時(shí)包裝盒的高與底面邊長(zhǎng)的比值為
即包裝盒的高與底面邊長(zhǎng)的比值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋內(nèi)有大小完全相同的個(gè)黑球和個(gè)白球,從中不放回地每次任取個(gè)小球,直至取到白球后停止取球,則( )
A.抽取次后停止取球的概率為
B.停止取球時(shí),取出的白球個(gè)數(shù)不少于黑球的概率為
C.取球次數(shù)的期望為
D.取球次數(shù)的方差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=2px(p>0)上的點(diǎn)A(4,t)到其焦點(diǎn)F的距離為5.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)過(guò)點(diǎn)F作直線(xiàn)l,使得拋物線(xiàn)C上恰有三個(gè)點(diǎn)到直線(xiàn)1的距離為2,求直線(xiàn)1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研小組有20個(gè)不同的科研項(xiàng)目,每年至少完成一項(xiàng)。有下列兩種完成所有科研項(xiàng)目的計(jì)劃:
A計(jì)劃:第一年完成5項(xiàng),從第一年開(kāi)始,每年完成的項(xiàng)目不得少于次年,直到全部完成為止;
B計(jì)劃:第一年完成項(xiàng)數(shù)不限,從第一年開(kāi)始,每年完成的項(xiàng)目不得少于次年,恰好5年完成所有項(xiàng)目。
那么,按照A計(jì)劃和B計(jì)劃所安排的科研項(xiàng)目不同完成順序的方案數(shù)量
A. 按照A計(jì)劃完成的方案數(shù)量多
B. 按照B計(jì)劃完成的方案數(shù)量多
C. 按照兩個(gè)計(jì)劃完成的方案數(shù)量一樣多
D. 無(wú)法判斷哪一種計(jì)劃的方案數(shù)量多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了改善市民的生活環(huán)境,信陽(yáng)市決定對(duì)信陽(yáng)市的1萬(wàn)家中小型化工企業(yè)進(jìn)行污染情況摸排,并出臺(tái)相應(yīng)的整治措施.通過(guò)對(duì)這些企業(yè)的排污口水質(zhì),周邊空氣質(zhì)量等的檢驗(yàn),把污染情況綜合折算成標(biāo)準(zhǔn)分100分,發(fā)現(xiàn)信陽(yáng)市的這些化工企業(yè)污染情況標(biāo)準(zhǔn)分基本服從正態(tài)分布N(50,162),分值越低,說(shuō)明污染越嚴(yán)重;如果分值在[50,60]內(nèi),可以認(rèn)為該企業(yè)治污水平基本達(dá)標(biāo).
(1)如圖是信陽(yáng)市的某工業(yè)區(qū)所有被調(diào)查的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的頻率分布直方圖,請(qǐng)計(jì)算這個(gè)工業(yè)區(qū)被調(diào)查的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的平均值,并判斷該工業(yè)區(qū)的化工企業(yè)的治污平均值水平是否基本達(dá)標(biāo);
(2)大量調(diào)査表明,如果污染企業(yè)繼續(xù)生產(chǎn),那么標(biāo)準(zhǔn)分低于18分的化工企業(yè)每月對(duì)周邊造成的直接損失約為10萬(wàn)元,標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè)每月對(duì)周邊造成的直接損失約為4萬(wàn)元.長(zhǎng)沙市決定關(guān)停80%的標(biāo)準(zhǔn)分低于18分的化工企業(yè)和60%的標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有多少?
(附:若隨機(jī)變量,則, ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(是常數(shù),).
(1)當(dāng)時(shí),求不等式的解集;
(2)若函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線(xiàn)組成(“”表示一根陽(yáng)線(xiàn),“”表示一根陰線(xiàn)),從八卦中任取兩卦,這兩卦的六根線(xiàn)中恰有三根陽(yáng)線(xiàn)和三根陰線(xiàn)的概率__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)記的導(dǎo)函數(shù)為,若不等式在區(qū)間上恒成立,求的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若存在兩個(gè)極值點(diǎn),,且滿(mǎn)足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)與拋物線(xiàn)C:及其準(zhǔn)線(xiàn)分別交于M,N兩點(diǎn),F為拋物線(xiàn)的焦點(diǎn),若,則m等于( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com