【題目】平面直角坐標(biāo)系中,已知橢圓()的左焦點為,離心率為,過點且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準方程;
(2)設(shè)點分別是橢圓的左、右頂點,若過點的直線與橢圓相交于不同兩點、.
①求證:;
②求面積的最大值.
【答案】(1) (2) ①見解析②面積的最大值是
【解析】試題分析:(1)根據(jù)題意得,,又,即可得方程;
(2)①當(dāng)時,顯然,滿足題意;當(dāng)時,設(shè),,直線方程為,代入橢圓方程,整理得,由,結(jié)合韋達定理即可得解;
②由結(jié)合韋達定理得,利用均值不等式求最值即可.
試題解析:
(1)由題意可得,
令,可得,即有,
又,所以,.
所以橢圓的標(biāo)準方程為;
(2)①當(dāng)時,顯然,滿足題意;
當(dāng)時,設(shè),,直線方程為,
代入橢圓方程,整理得,
則,所以.
,
則
.
則,即;
②
當(dāng)且僅當(dāng),即.(此時適合的條件)取得等號.
則面積的最大值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試.現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在到之間,將測試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的下頂點為,右頂點為,離心率,拋物線的焦點為,是拋物線上一點,拋物線在點處的切線為,且.
(1)求直線的方程;
(2)若與橢圓相交于,兩點,且,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠時,視角最大?
(2)若當(dāng)變化時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為,,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點,線段的垂直平分線交軸于點,當(dāng)變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,是的中點,是線段上一個動點,且,如圖所示,沿將翻折至,使得平面平面.
(1)當(dāng)時,證明:平面;
(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點.
(1)求的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)的圖象在點處的切線平行于直線,求的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在上的最小值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com