【題目】隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(Ⅰ)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個(gè)晴天開(kāi)始舉行連續(xù)2天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

【答案】解:(Ⅰ)在4月份任取一天,不下雨的天數(shù)是26,以頻率估計(jì)概率,估計(jì)西安市在該天不下雨的概率為 ;(Ⅱ)稱相鄰的兩個(gè)日期為“互鄰日期對(duì)”,由題意,4月份中,前一天為晴天的互鄰日期對(duì)有16個(gè),其中后一天不下雨的有14個(gè),所以晴天的次日不下雨的概率為 ,
從而估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率為
【解析】(Ⅰ)在4月份任取一天,不下雨的天數(shù)是26,即可估計(jì)西安市在該天不下雨的概率;(Ⅱ)求得4月份中,前一天為晴天的互鄰日期對(duì)有16個(gè),其中后一天不下雨的有14個(gè),可得晴天的次日不下雨的概率,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中 是自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求曲線處的切線方程;

2求函數(shù)的單調(diào)減區(qū)間;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題中

非零向量滿足,則的夾角為;

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為(
A.
B.8π
C.9π
D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 , 平面 ,

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬;將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑, 平面, , ,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則球的表面積為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在三棱錐A﹣BCD中,AB=CD,且點(diǎn)M,N分別是BC,AD的中點(diǎn).若直線AB⊥CD,則直線AB與MN所成的角為

查看答案和解析>>

同步練習(xí)冊(cè)答案