(本小題滿分12分)
求函數(shù)的值域.

解析試題分析:當(dāng)x<0時(shí),-x>0,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,當(dāng)x>0時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/2/1w1pw3.png" style="vertical-align:middle;" />
考點(diǎn):本題考查了基本不等式的運(yùn)用
點(diǎn)評(píng):在利用基本不等式時(shí),有時(shí)往往需要對(duì)項(xiàng)數(shù)加以變形處理,使之滿足均值不等式的要求,為利用基本不等式求解創(chuàng)造條件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是函數(shù)的兩個(gè)零點(diǎn),函數(shù)的最小值為,記
(。┰囂角之間的等量關(guān)系(不含);
(ⅱ)當(dāng)且僅當(dāng)在什么范圍內(nèi),函數(shù)存在最小值?
(ⅲ)若,試確定的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)上是偶函數(shù),其圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共12分)
已知函數(shù)
(1)若對(duì)于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個(gè)極值點(diǎn),,求證:;
(3)設(shè)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù)
若函數(shù)在區(qū)間(a,a+)上存在極值,其中a>0,求實(shí)數(shù)a的取值范圍;
如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
已知奇函數(shù)對(duì)任意,總有,且當(dāng)時(shí),.
(1)求證:上的減函數(shù).
(2)求上的最大值和最小值.
(3)若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(Ⅰ)若上為單調(diào)函數(shù),求m的取值范圍;
(Ⅱ)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù) 
(Ⅰ)設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(Ⅱ)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案