過拋物線y2=2x內(nèi)的任意一點(diǎn)Q(s,t)(t2<2s)作兩條相互垂直的弦AB,CD,若弦AB,CD的中點(diǎn)分別為M,N,直線MN恒過定點(diǎn)( 。
A.(s+1,0)B.(|1-s|,0)C.(1+2s,0)D.(|1-2s|,0)
不妨取Q點(diǎn)是拋物線的焦點(diǎn)(
1
2
,0).
設(shè)點(diǎn)A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4
把直線AB:y=k(x-
1
2
)代入y2=2x,得
k2x2-(k2+2)x+
1
4
k2=0,
∴x3=
x1+x2
2
=
1
2
+
1
k2
,y3=k(x3-
1
2
)=
1
k

同理可得,x4=
1
2
+k2,y4=-k,
∴kMN=
y3-y4
x3-x4
=
k
1-k2

∴直線MN為y-
1
k
=
k
1-k2
(x-
1
2
-
1
k2
),即y=
k
1-k2
(x-
3
2
),
結(jié)合直線方程的點(diǎn)斜式,可得直線恒過定點(diǎn)P(
3
2
,0),
對照Q點(diǎn)是拋物線的焦點(diǎn)(
1
2
,0),定點(diǎn)P可以寫成(
1
2
+1,0).
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線C的頂點(diǎn)坐標(biāo)為原點(diǎn),焦點(diǎn)在x軸上,直線y=x與拋物線C交于A,B兩點(diǎn),若的中點(diǎn),則拋物線C的方程為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),以x軸為對稱軸,經(jīng)過焦點(diǎn)且傾斜角為135°的直線被拋物線所截得的弦長為8,試求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拱橋呈拋物線形y=ax2,拱橋的頂點(diǎn)O距水面4米時,測得拱橋內(nèi)水面的寬AB等于16米,則a的值______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

準(zhǔn)線為y=-2的拋物線的標(biāo)準(zhǔn)方程為( 。
A.x2=4yB.x2=-4yC.x2=8yD.x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是拋物線y2=4x上一動點(diǎn),F(xiàn)是拋物線的焦點(diǎn),定點(diǎn)A(4,1),則|PA|+|PF|的最小值為( 。
A.5B.2C.
17
D.
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=-2px(p>0)上橫坐標(biāo)為-3的一點(diǎn)到準(zhǔn)線的距離為4.
(1)求p的值;
(2)設(shè)動直線y=x+b與拋物線C相交于A、B兩點(diǎn),問在直線l:y=2上是否存在與b的取值無關(guān)的定點(diǎn)M,使得∠AMB被直線l平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

M是拋物線y2=4x上的一點(diǎn),F(xiàn)是拋物線的焦點(diǎn),以Fx為始邊,F(xiàn)M為終邊的∠xFM=60°,則|FM|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個動點(diǎn),且滿足∠AFB=120°.過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|MN|
|AB|
的最大值為( 。
A.
3
3
B.1C.
2
3
3
D.2

查看答案和解析>>

同步練習(xí)冊答案