如圖1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2。
(1)求證:BC⊥平面A1DC;
(2)若CD=2,求BE與平面A1BC所成角的正弦值。
(1)詳見解析;(2)
解析試題分析:(1)可以利用線線BC,垂直,來證明線面BC⊥平面A1DC垂直;
(2)可以以D為原點(diǎn),分別以為x,y,z軸的正方向,建立空間直角坐標(biāo)系,然后利用空間向量的線面角公式即可.
試題解析:(Ⅰ)DE,DE//BC,BC 2分
又,AD 4分
(2)以D為原點(diǎn),分別以為x,y,z軸的正方向,
建立空間直角坐標(biāo)系D-xyz 5分
說明:建系方法不唯一 ,不管左手系、右手系只要合理即可
在直角梯形CDEB中,過E作EFBC,EF=2,BF=1,BC=3 6分
B(3,0,-2)E(2,0,0)C(0,0,-2)A1(0,4,0) 8分
9分
設(shè)平面A1BC的法向量為
令y=1, 10分
設(shè)BE與平面A1BC所成角為, 12分
考點(diǎn):(1)空間位置關(guān)系的證明;(2)利用向量解決立體幾何問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知長方形中,,為的中點(diǎn).將沿折起,使得平面平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)E在何位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱AB上的動點(diǎn).
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45o,求的值;
(3)寫出點(diǎn)E到直線D1C距離的最大值及此時點(diǎn)E的位置(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,//,,,平面,.
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐P—ABCD的底面是邊長為2的菱形,∠DAB=60°,側(cè)棱,,M、N兩點(diǎn)分別在側(cè)棱PB、PD上,.
(1)求證:PA⊥平面MNC。
(2)求平面NPC與平面MNC的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點(diǎn),D為AC的中點(diǎn).
求證:平面POD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足=== (如圖(1)),將△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,連接B、P(如圖(2)).
(1)求證: E⊥平面BEP;
(2)求直線E與平面BP所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com