已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程.

(1)(x-1)2+y2=13.     (2)y=-x+4或y=-x-3

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80m.經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),.以所在直線為軸,以所在直線為軸建立平面直角坐標(biāo)系.
(Ⅰ)求所在直線的方程及新橋BC的長;
(Ⅱ)當(dāng)OM多長時,圓形保護區(qū)的面積最大?
并求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C過原點且與相切,且圓心C在直線上.
(1)求圓的方程;(2)過點的直線l與圓C相交于A,B兩點, 且, 求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓O的直徑AB=8,圓周上過點C的切線與BA的延長線交于點E,過點B作AC的平行線交EC的延長線于點P.

(1)求證:BC2=AC·BP;
(2)若EC=2,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點是直線上一動點,是圓C:的兩條切線,A、B是切點,若四邊形的最小面積是2,則的值為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B、D交AB于另一點E,⊙O2經(jīng)過點C、D交AC于另一點F,⊙O1與⊙O2交于點G.

(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點分別為,上、下頂點分別為、.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.

(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說明理由;
(3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

過點A(4,1)的圓C與直線x-y=0相切于點B(2,1),則圓C的方程為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

P(x,y)在圓C:(x-1)2+(y-1)2=1上移動,試求x2+y2的最小值.

查看答案和解析>>

同步練習(xí)冊答案