【題目】已知點在橢圓上,為坐標原點,直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過點的直線)與橢圓交于兩點,關于原點的對稱點為(與點不重合),直線,軸分別交于兩點,,求證:.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

(Ⅰ)根據(jù)橢圓的中點弦所在直線的斜率的性質(zhì),得到,得到再結(jié)合橢圓所過的點的坐標滿足橢圓方程,聯(lián)立方程組,求得進而求得橢圓的方程;

(Ⅱ)將直線方程與橢圓方程聯(lián)立,消元,利用韋達定理得到兩根和與兩根積,將證明結(jié)果轉(zhuǎn)化為證明直線的斜率互為相反數(shù),列式,可證.

(Ⅰ)由題意,,

聯(lián)立①①解得

所以,橢圓的方程為.

(Ⅱ)設,,,

所以,

又因為,所以,,

,

解法一:要證明可轉(zhuǎn)化為證明直線,的斜率互為相反數(shù)只需證明,即證明.

,∴.

解法二:要證明,可轉(zhuǎn)化為證明直線,軸交點、連線中點的縱坐標為,垂直平分即可.

直線的方程分別為

,,

分別令,,

,同解法一可得

,垂直平分.

所以,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是平面上由個點組成的點集.若在中任取四個點,均至少有一個點與其余三個點相連,則下面結(jié)論中正確的是______.

中不存在與其他所有點相連的點;

中至少有一個點與其余所有的點均相連;

中至多有兩個點與其余的點不相連;

中至多有兩個點與其余所有的點均相連.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】名學生中,已知任意三人中有兩人互相認識,任意四人中有兩人互相不認識,則的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點在線段上運動,則下列判斷中正確的是( )

①平面平面;

平面

③異面直線所成角的取值范圍是;

④三棱錐的體積不變.

A. ①② B. ①②④ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有和、“諧”、“!薄皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生之間取整數(shù)值的隨機數(shù),分別用,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):

由此可以估計,恰好第三次就停止摸球的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱,側(cè)面為菱形,.

(1)求證:平面;

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人輪流吹同一只氣球,當且僅當氣球內(nèi)的氣體體積單位毫升大于2014時,氣球會被吹破先由甲開始吹入1毫升氣體,約定以后每次吹入的氣體體積為上一次體積的2倍或,且吹入的氣體體積為整數(shù)

(1)若誰先吹破氣球誰輸,問誰有必勝策略?證明你的結(jié)論

(2)若在不吹破氣球的前提下,約定單次吹入的氣體體積最大者為贏家如果吹入的體積相同,則最先吹出最大體積者為贏家).誰有必勝策略?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),且,若,則.

查看答案和解析>>

同步練習冊答案