已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.

(I)求橢圓C的方程;

(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

解:(Ⅰ)  

所以橢圓方程為  

(Ⅱ)由已知直線AB的斜率存在,設(shè)AB的方程為:

    得

,得:,即 

設(shè) 

(1)若為直角頂點(diǎn),則 ,即 ,

,所以上式可整理得,

,解,得,滿足 

 (2)若為直角頂點(diǎn),不妨設(shè)以為直角頂點(diǎn),,則滿足:

,解得,代入橢圓方程,整理得,

解得,,滿足  

時(shí),三角形為直角三角形   

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.

(I)求橢圓C的方程;

(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.

(I)求橢圓C的方程;

(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省邯鄲市高三下學(xué)期第一次(3月)模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.

(I)求橢圓C的方程;

(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:  (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.

(I)求橢圓C的方程;

(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.

查看答案和解析>>

同步練習(xí)冊答案