已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
(I) (II)
【解析】
試題分析:(I)由已知可得b=c=1,再由a2=b2+c2,解出a即可.
(II)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-2),代入橢圓中,得到關(guān)于x的一元二次方程,由判別式求出k的取值范圍,和用k表示的x1+x2,x1x2的表達(dá)式,然后分以O(shè)或A或B為直角頂點(diǎn),根據(jù)向量垂直的坐標(biāo)表示的充要條件列出關(guān)于k的方程,求解即可.
試題解析:(Ⅰ) ,所以橢圓方程為
(Ⅱ)由已知直線AB的斜率存在,設(shè)AB的方程為:
由 得
,得:,即
設(shè),
(1)若為直角頂點(diǎn),則 ,即 ,
,所以上式可整理得,
,解,得,滿足
(2)若為直角頂點(diǎn),不妨設(shè)以為直角頂點(diǎn),,則滿足:
,解得,代入橢圓方程,整理得,
解得,,滿足
時(shí),三角形為直角三角形
考點(diǎn):1.橢圓方程及其性質(zhì);2.直線與橢圓的相交的條件;3.向量垂直的充要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省邯鄲市高三下學(xué)期第一次(3月)模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com