精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面的中點,為等邊三角形,是棱上的一點,設不重合).

1)當時,求三棱錐的體積;

2)若平面,求的值.

【答案】1;(21.

【解析】

1)由已知先證明底面,即為棱錐的高,然后由中點得到平面的距離等于,在直角梯形中計算線段長可求得的面積,從而易得所求體積.

2)連接,交于點,則的中點,由線面平行的性質定理可得,從而可知的中點.

1)易求得,,且,

因為的中點,為等邊三角形,所以

又因為平面底面,

由面面垂直的性質定理可知底面

因為,所以的中點,所以到底面的距離為,等于,

所以三棱錐的體積為;

2)連接,交于點,則的中點,

連接,因為平面,

由線面平行的性質定理可知,則的中點,所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面ABCD為菱形,,側面為等腰直角三角形,,點E為棱AD的中點.

1)求證:平面ABCD;

2)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC內的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區(qū)的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,(單位:元),得到如圖所示的頻率分布直方圖.

(1)試根據頻率分布直方圖估計該地區(qū)每個農戶的平均損失(同一組中的數據用該組區(qū)間的中點值代表);

(2)臺風后該青年志愿者與當地政府向社會發(fā)出倡議,為該地區(qū)的農戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

1)求方程的實數根;

2)設,均為正整數,且為最簡根式,若存在,使得可唯一表示為的形式,試求橢圓的焦點坐標;

3)已知,是否存在,使得成立,若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,,二面角,的中點,點上,且

1)求證:四邊形為直角梯形;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論中

①若空間向量,,則的充要條件;

②若的必要不充分條件,則實數的取值范圍為;

③已知,為兩個不同平面,,為兩條直線,,,,則的充要條件;

④已知向量為平面的法向量,為直線的方向向量,則的充要條件.

其中正確命題的序號有(

A.②③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數,),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求的普通方程和極坐標方程;

(2)若相交于、兩點,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是  

A. 棱柱的側面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐

查看答案和解析>>

同步練習冊答案