【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活.在家里面不用出門(mén)就可以買(mǎi)到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門(mén)口,如果近的話(huà)當(dāng)天買(mǎi)當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購(gòu)是非常方便的購(gòu)物方式.某公司組織統(tǒng)計(jì)了近五年來(lái)該公司網(wǎng)購(gòu)的人數(shù)(單位:人)與時(shí)間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線(xiàn)性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(計(jì)算結(jié)果精確到0.01).(若,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)
附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)第六年該公司的網(wǎng)購(gòu)人數(shù)(計(jì)算結(jié)果精確到整數(shù)).
(參考公式: ,)
【答案】(1)見(jiàn)解析;(2) 網(wǎng)購(gòu)人數(shù)約為91人
【解析】
(1)由已知數(shù)據(jù)求得r值,由r值接近1可得y與t的線(xiàn)性相關(guān)程度很高,從而可以用線(xiàn)性回歸模型擬合y與t的關(guān)系.
(2)求出與的值,得到線(xiàn)性回歸方程,取t=6求得y值得答案.
(1)由題知,,,,,
則
.
故與的線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合.
(2)由(1)得,
.
所以與的回歸方程為.
將帶入回歸方程,得,
所以預(yù)測(cè)第6年該公司的網(wǎng)購(gòu)人數(shù)約為91人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,底面,,,,為的中點(diǎn).
(1)求證:;
(2)若二面角的大小為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),及圓.
(1)求過(guò)點(diǎn)的圓的切線(xiàn)方程;
(2)若過(guò)點(diǎn)的直線(xiàn)與圓相交,截得的弦長(zhǎng)為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)個(gè)正數(shù)依次圍成一個(gè)圓圈,其中是公差為的等差數(shù)列,而是公比為的等比數(shù)列.
(1)若,求數(shù)列的所有項(xiàng)的和;
(2)若,求的最大值;
(3)當(dāng)時(shí)是否存在正整數(shù),滿(mǎn)足?若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,前m(m為奇數(shù))項(xiàng)的和為77,其中偶數(shù)項(xiàng)之和為33,且a1-am=18,則數(shù)列{an}的通項(xiàng)公式為an= ______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為4的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線(xiàn)段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若的圖像與直線(xiàn)相切,求
(Ⅱ)若且函數(shù)的零點(diǎn)為,
設(shè)函數(shù)試討論函數(shù)的零點(diǎn)個(gè)數(shù).(為自然常數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是常數(shù)且.
(1)若曲線(xiàn)在處的切線(xiàn)經(jīng)過(guò)點(diǎn),求的值;
(2)若(是自然對(duì)數(shù)的底數(shù)),試證明:①函數(shù)有兩個(gè)零點(diǎn),②函數(shù)的兩個(gè)零點(diǎn)滿(mǎn)足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上兩點(diǎn)M(-5,0)和N(5,0),若直線(xiàn)上存在點(diǎn)P使|PM|-|PN|=6,則稱(chēng)該直線(xiàn)為“單曲型直線(xiàn)”,下列直線(xiàn)中是“單曲型直線(xiàn)”的是( )
①; ②y=2; ③; ④.
A.①③ B. ③④ C.②③ D.①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com